1,081 research outputs found

    Submergence and uplift associated with the giant 1833 Sumatran subduction earthquake: Evidence from coral microatolls

    Get PDF
    The giant Sumatran subduction earthquake of 1833 appears as a large emergence event in fossil coral microatolls on the reefs of Sumatra's outer-arc ridge. Stratigraphic analysis of these and living microatolls nearby allow us to estimate that 1833 emergence increased trenchward from about 1 to 2 m. This pattern and magnitude of uplift are consistent with about 13 m of slip on the subduction interface and suggest a magnitude (M_w) of 8.8–9.2 for the earthquake. The fossil microatolls also record rapid submergence in the decades prior to the earthquake, with rates increasing trenchward from 5 to 11 mm/yr. Living microatolls show similar rates and a similar pattern. The fossil microatolls also record at least two less extensive emergence events in the decades prior to 1833. These observations show that coral microatolls can be useful paleoseismic and paleogeodetic instruments in convergent tectonic environments

    Density functional theory embedding for correlated wavefunctions: Improved methods for open-shell systems and transition metal complexes

    Full text link
    Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and we develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential (OEP) calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexaaquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination.Comment: 11 pages, 5 figures, 2 table

    Abstracts and Citations

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138936/1/head13152.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138936/2/head13152_am.pd

    Density functional theory embedding for correlated wavefunctions: Improved methods for open-shell systems and transition metal complexes

    Get PDF
    Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexa-aquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination

    Accurate basis set truncation for wavefunction embedding

    Get PDF
    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)]10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding

    Seismic recurrence intervals and timing of aseismic subduction inferred from emerged corals and reefs of the Central Vanuatu (New Hebrides) Frontal Arc

    Get PDF
    The recognition and dating of corals that have been killed by tectonic uplift allow us to date paleoseismic uplifts in the Vanuatu island arc. We recognize corals that record paleouplifts by their similarity to those known to have died during contemporary sudden uplifts and date them (1) by counting annual coral growth bands (only if part of the coral is alive at the time of collection) or (2) by newly developed techniques for obtaining ^(230)Th ages by mass spectrometry. The mass spectrometric method produces isotopic ages with precisions of ±3 to ±9 years (2σ) in the 0–1000 years B.P. time range. The ^(230)Th ages in this time range appear to be accurate. Samples whose ages are known by counting coral growth bands give ^(230)Th ages that are indistinguishable from their growth band ages. By dividing the average increment of uplift for the latest Holocene uplifts by the mean Holocene uplift rate, we can estimate average seismic uplift recurrence intervals for the past 6000 years. The results for each of four central Vanuatu arc segments are (1) North Santo emerged 1.2 m in 1866 A.D. and 0.6 m 107 years later in 1973 A.D. The average coseismic uplift of 0.9 m and mean Holocene uplift rate of 4.3 mm yr^(−1) suggest a longer recurrence interval of 212 years. (2) South Santo emerged 0.29 m in 1946 and 0.26 m 19 years later in 1965, including the related 1971 event. Here the mean Holocene uplift rate is 5.5 mm yr^(−1). The uplift data suggest a longer average recurrence interval of about 51 years. (3) North Malekula emerged 1.23 m near 1729 A. D. and 1.05 m 236 years later in 1965. The mean Holocene uplift rate of 2.7 mm yr^(−1) and mean coseismic uplift of 1.14 m for dated events suggest a longer recurrence interval of 422 years. (4) Part of southernmost Malekula has uplifted continuously or episodically by about 0.35 m from about 1957 until at least mid-1983 A.D. The maximum uplift of 2.7 mm yr^(−1) occurs near a nest of small earthquakes. Both the earthquakes and rapid uplift suggest that interplate slip beneath south Malekula may be continuous, rather than episodic. Episodes of 0.35 m uplift would have to recur every 130 years to maintain the 2.7 mm yr^(−1) uplift rate. In contrast, we find no evidence of interseismic vertical movements for the other three blocks. The most reasonable interpretation of these results is that the seismic recurrence intervals and processes for accommodation of slip are quite different on adjacent arc segments. We have used the most widely accepted moment magnitude relationship to evaluate the accumulated seismic slip caused by large earthquakes occurring since 1920. In all four arc segments this analysis suggests that the seismically radiated moments account for less than one-third to one-tenth of the slip associated with plate convergence. The similarity between the paleoseismic record of uplifts and the contemporary record of coseismic uplifts suggests that this analysis can be generalized to times before 1920. For the northern three segments of central Vanuatu, aseismic slip probably occurs in the same years as large earthquakes because the contemporary coral record records uplifts only in years having large historic earthquakes. This suggests that aseismic slip is not continuous and does not occur at rates which vary slowly over the course of the earthquake cycle. The south Santo segment may have the highest proportion of seismic slip because the mean recurrence interval of 51 years is shortest and the mean Holocene uplift rate of at least 5.5 mm yr^(−1) is the fastest
    • …
    corecore