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We analyze the sources of error in quantum embedding calculations in which an active subsystem is
treated using wavefunction methods, and the remainder using density functional theory. We show that
the embedding potential felt by the electrons in the active subsystem makes only a small contribution
to the error of the method, whereas the error in the nonadditive exchange-correlation energy domi-
nates. We test an MP2 correction for this term and demonstrate that the corrected embedding scheme
accurately reproduces wavefunction calculations for a series of chemical reactions. Our projector-
based embedding method uses localized occupied orbitals to partition the system; as with other local
correlation methods, abrupt changes in the character of the localized orbitals along a reaction coor-
dinate can lead to discontinuities in the embedded energy, but we show that these discontinuities are
small and can be systematically reduced by increasing the size of the active region. Convergence of
reaction energies with respect to the size of the active subsystem is shown to be rapid for all cases
where the density functional treatment is able to capture the polarization of the environment, even in
conjugated systems, and even when the partition cuts across a double bond. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4864040]

I. INTRODUCTION

The observation that many chemical processes are pre-
dominately governed by changes within a localized subsys-
tem has motivated the development of a number of multiscale
strategies.1–24 The success of such methods is contingent on
the availability of a sufficiently accurate description of the en-
vironment, as well as a suitable model for the coupling be-
tween subsystems. Density functional theory (DFT) provides
an ideal framework for multiscale embedding.17–24 In these
approaches, an electronic structure calculation on a chem-
ical system is partitioned into calculations on two subsys-
tems: subsystem A, which is treated using an accurate wave-
function theory (WFT), and subsystem B, which is treated
using the more computationally efficient DFT method.25–36

Our projector-based WFT-in-DFT embedding approach has
the advantage of offering a framework that is both exact for
cases in which both subsystems are treated using DFT (DFT-
in-DFT embedding) and efficient for calculations on large
systems.36, 37

Although projector-based embedding is numerically ex-
act for DFT-in-DFT embedding, it is clear that some error is
introduced into any practical WFT-in-DFT embedding calcu-
lation. Because the energy of the DFT environment is cal-
culated at the DFT level, this contribution will be no more
accurate than that of a standard DFT calculation. Evaluation

a)Electronic mail: fred.manby@bristol.ac.uk. Present address: California
Institute of Technology, Pasadena, California, USA.

b)Electronic mail: tfm@caltech.edu

of the interaction between subsystems is also handled using
DFT theory, which introduces errors into both the embedding
potential of the WFT subsystem, and the nonadditive energy
between subsystems. We analyze WFT-in-DFT embedding by
decomposing the error into these three contributions, and use
the results to suggest further improvements to projector-based
embedding. The analysis is performed through careful com-
parison with local coupled-cluster calculations.

We also analyze the errors of a number of embedding
calculations on systems that might be expected to be partic-
ularly difficult to treat using projector-based embedding. In
particular, we investigate the potential energy surface of a het-
erolytic bond cleavage using projector-based embedding. As
with other local correlation methods, our embedding method
exhibits discontinuities in the potential energy surface; how-
ever, these discontinuities are small and decrease as the WFT
subsystem is expanded. Finally, we consider reactions in-
volving highly conjugated molecules, and find that projector-
based embedding produces reliably accurate results for reac-
tions involving moderate changes in polarization.

II. PROJECTOR-BASED EMBEDDING

The projector-based embedding method provides a rigor-
ous framework for embedding a DFT or WFT subsystem de-
scription in a DFT environment.36 In this approach, a Kohn-
Sham (KS)-DFT calculation is first performed over the full
system. The resulting occupied molecular orbitals (MOs),
{φi}, are then localized and partitioned into the sets {φA

i } and

0021-9606/2014/140(18)/18A507/9/$30.00 © 2014 AIP Publishing LLC140, 18A507-1
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{φB
i }, which correspond to subsystems A and B, respectively.

These two sets of orbitals are used to form the density ma-
trices of subsystems A and B in the atomic orbital basis, γ A

and γ B.
Next, the subsystem Fock matrix is formed for the em-

bedding calculation, such that

fA = hA in B[γ A, γ B] + g[γ̃ A], (1)

where the embedded core Hamiltonian is

hA in B[γ A, γ B] = h + g[γ A + γ B] − g[γ A] + μPB. (2)

Here, h is the standard one-electron core Hamiltonian, g in-
cludes all the two-electron terms, PB is a projection operator,
and μ is a level-shift parameter; γ̃ A is the density matrix as-
sociated with the MO eigenstates of fA, {φ̃A

i }. The projection
operator is given by

P B
αβ ≡ 〈bα|

{∑
i∈B

∣∣φB
i

〉〈
φB

i

∣∣} |bβ〉, (3)

where α, β label the atomic orbital basis functions.38–45 In the
limit of μ → ∞, the MOs in {φ̃A

i } are constrained to be mu-
tually orthogonal with the MOs of subsystem B;36, 37 if in ad-
dition the same density functional is used for all calculations,
the MOs {φ̃A

i } coincide with the original orbitals {φA
i }.

A self-consistent field optimization, using the Fock ma-
trix fA, is performed to obtain γ̃ A, and the final DFT-in-DFT
energy is

EDFT[γ̃ A; γ A, γ B]

= EDFT[γ̃ A] + EDFT[γ B] + Enad
DFT[γ A, γ B]

+ tr[(γ̃ A − γ A)(hA in B[γ A, γ B] − h)], (4)

where EDFT is the standard DFT energy (evaluated with core-
Hamiltonian h) and Enad

DFT[γ A, γ B] is the nonadditive energy
between the subsystem densities. The last term is a first-
order correction to the difference between Enad

DFT[γ A, γ B] and
Enad

DFT[γ̃ A, γ B].31 In the limit of μ → ∞, γ̃ A = γ A and the
DFT-in-DFT embedding energy is identical to the energy
from the corresponding KS calculation performed over the
full system; as a result, the projector-based approach is nu-
merically exact for DFT-in-DFT embedding calculations.36 In
practice, a large finite value of μ is used, and an additional
perturbative correction to the energy can be performed;36

for appropriate values of μ this correction is typically far
smaller than the energy differences discussed in this paper
and is thus neglected throughout. Furthermore, as has been
previously emphasized, this embedding scheme is exact for
any self-consistent field method, such as Hartree-Fock (HF)
theory.36, 37

The nonadditive contribution to the energy,
Enad

DFT[γ A, γ B], can be decomposed into electrostatic
and exchange-correlation contributions

Enad
DFT[γ A, γ B] = J nad[γ A, γ B] + Enad

xc [γ A, γ B], (5)

where

J nad[γ A, γ B] =
∫

dr1

∫
dr2

γ A(1)γ B(2)

r12
(6)

and

Enad
xc [γ A, γ B] = Exc[γ A + γ B] − Exc[γ A] − Exc[γ B]. (7)

The electrostatic term, J nad, is easily evaluated, and
although the exact form of Exc is unknown, approxi-
mate functionals are well established. Since the embed-
ded MOs {φ̃A

i } are orthogonal to those in subsystem B,
there is no nonadditivity in the kinetic energy. This removes
the requirement of performing optimized effective potential
calculations20, 21, 23, 24, 30, 31 or using approximate nonadditive
kinetic energy functionals.

The projector-based formalism easily allows for WFT-
in-DFT embedding, in which subsystem A is treated using a
WFT-level description and subsystem B is described at the
DFT level.36 This is achieved by replacing the standard one-
electron core Hamiltonian with the embedded core Hamilto-
nian of Eq. (2). The electronic energy from the WFT-in-DFT
embedding approach is

EWFT[�A; γ A, γ B] = 〈�A|Ĥ A in B[γ A, γ B]|�A〉
− tr[γ A(hA in B[γ A, γ B] − h)]

+EDFT[γ B]

+Enad
DFT[γ A, γ B], (8)

where |�A〉 is the embedded wavefunction from
the WFT method, and Ĥ A in B[γ A, γ B] is the WFT
Hamiltonian resulting from replacing the standard one-
electron core Hamiltonian with the embedded core
Hamiltonian. The term tr[γ̃ A(hA in B[γ A, γ B] − h)] is in-
cluded in the first term of Eq. (8) and thus does not show up
in the first-order correction term, as it did in Eq. (4).

III. RESULTS I: SOURCES OF ERROR
IN WFT-IN-DFT EMBEDDING

A. Term-by-term comparison with LCSSD(T)

We now formulate an approach to compare the individual
terms in the energy expression of a CCSD(T)-in-DFT embed-
ding calculation with the corresponding values calculated at
the CCSD(T) level.46 To do this, we first recognize that the lo-
cal (L)CCSD(T) method by Schütz and Werner47–50 becomes
exactly equivalent to the canonical CCSD(T) method when all
orbital pairs are correlated and all excitation domains are set
to the full virtual basis. The terms in the LCCSD(T) energy
expression, in turn, can be organized in a way that enables
direct comparison to the terms in the CCSD(T)-in-DFT em-
bedding energy expression.

The LCCSD(T) energy can be decomposed as a function
of the amplitudes and the atomic-orbital density matrices as

ELCCSD(T)[T1, T2, T3; γ A, γ B]

= +EHF[γ A] + EA
(S) + EA

(D) + EA
(T)

+EHF[γ B] + EB
(S) + EB

(D) + EB
(T)

+Enad
HF [γ A, γ B] + Enad

(D) + Enad
(T) , (9)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  137.222.114.245 On: Thu, 17 Mar

2016 09:43:55



18A507-3 Goodpaster et al. J. Chem. Phys. 140, 18A507 (2014)

where EHF is the HF energy and Enad
HF [γ A, γ B] is the same

as Eq. (5), except with the corresponding exchange terms re-
placing Enad

xc [γ A, γ B]. When the full virtual space is included,
the singles are additive and thus there is no nonadditive com-
ponent. The nonadditive correlation for the double-excitation
terms is simply

Enad
(D) = E(D) − EA

(D) − EB
(D) (10)

and likewise for the triple-excitation correlation energy.
The correlation energy from the single excitations within

subsystem A is given by

EA
(S) = 2

∑
i∈A

f i†t i ,
(11)

where the summation spans the occupied orbitals of subsys-
tem A, f i is the internal-external part of the Fock matrix in
vector form, and t i are the single excitation amplitudes in vec-
tor form.47

The correlation energy from the double excitations within
subsystem A is given by

EA
(D) =

∑
i≥j

i,j∈A

(2 − δij )tr[Lij Cij ],
(12)

where the summation spans the occupied orbitals of sub-
system A, and Lij are the internal coulomb and exchange
matrices. The matrix elements of Cij are given by C

ij
rs

= T
ij
rs + t ir t

j
s , where T

ij
rs and t ir are the double and single

excitation amplitudes, respectively.47

Finally, the correlation energy from the triple excitations
within subsystem A is given by

EA
(T) =

∑
i≥j≥k

i,j,k∈A

(2 − δij − δjk)

(∑
rstr ′

t ir ′Srr ′ (js|kt) X
ijk
rst

+
∑
rsts ′

t
j

s ′Sss ′ (ir|kt) X
ijk
rst

+
∑
rstt ′

t kt ′Stt ′ (ir|js) X
ijk
rst +

∑
rst

W
ijk

rst X
ijk
rst

)
, (13)

where the first summation spans the occupied orbitals of sub-
system A, the indices i, j, k represent occupied orbitals, and
the indices r, s, t represent unoccupied orbitals. Srr ′ is an
element of the overlap matrix of the projected atomic or-
bitals, (ir | js) are two-electron integrals, and t i

r are the single
amplitudes. X

ijk
rst is defined as X

ijk
rst = 4T

ijk
rst − 2T

ijk
rts − 2T

ijk
tsr

− 2T
ijk

srt + T
ijk
trs + T

ijk
str where T

ijk
rst are the triples amplitudes.

The tensor element W
ijk

rst contains the double-excitation am-
plitudes, T

ij
rs .48, 49

B. Calculation details

All geometry optimizations are performed using
Gaussian0951 and are provided in the supplementary
material.69 All other calculations are performed in Molpro
2012.1.52 In all calculations the orbitals are localized using
Pipek-Mezey localization.53 The atoms associated with

subsystem A for each reaction are given in the supplementary
material.69 Any localized orbital with a Löwdin charge of
0.4 on an atom associated with subsystem A is included
in the set of orbitals associated with subsystem A. All
calculations employ a level shift parameter μ, which is set
to 106 a.u. All KS-DFT calculations employ a large grid
for the exchange-correlation functional evaluation, achieved
by specifying the Molpro option GRID = 10−10. For com-
putational efficiency, all LCCSD(T) calculations employ
density fitting (DF),54, 55 and the triples are approximated
using the noniterative (T0) procedure.48, 49 We emphasize
that the T0 procedure is only used for calculations involving
Eqs. (14), (17), and (18) which arise in our error analysis; this
noniterative procedure is not used for any calculations outside
of Sec. III C.

To enable the rigorous comparison of terms from the
LCCSD(T) calculation and the embedding calculation, some
care must be taken. First, all orbital pairs are correlated to
recover the energy from canonical CCSD(T). Second, the
choice of orbitals must be consistent between the LCCSD(T)
and CCSD(T)-in-DFT embedding calculations.

In the WFT-in-DFT embedding method, subsystem B
comprises KS MOs, and thus evaluation of the errors result-
ing from using the DFT energy of subsystem B requires the
use of KS MOs as the reference MOs. The difference be-
tween canonical CCSD(T) using the HF reference and DF-
LCCSD(T0) using the KS reference is within 0.3 mEh for all
reactions discussed in Sec. III C, which is smaller than the
other sources of error that are analyzed; therefore, through-
out Sec. III C, we will simply refer to terms calculated from
DF-LCCSD(T0) as CCSD(T).

Likewise, consistent evaluation of the error arising from
the embedding potential requires that the reference MOs for
the embedded CCSD(T) calculation on subsystem A be ob-
tained from the corresponding DFT calculation. This choice
of reference MOs is only used in Sec. III C. In all other sec-
tions, the reference MOs of the embedded CCSD(T) calcula-
tion are chosen to be the set of MOs resulting from an em-
bedded HF calculation. We note that the difference between
CCSD(T)-in-DFT embedding where the MOs for subsystem
A are obtained from an embedded DFT calculation compared
to an embedded HF calculation is within 0.2 mEh for the re-
actions considered in Sec. III C.

Below we analyze the contributions to the embedding er-
ror for a set of six energies associated with different reac-
tions. All of the chosen reactions are not only large enough
to involve partitioning across a covalent bond, but also small
enough to allow for calculation of the CCSD(T) reference en-
ergy for the full system. The reactions considered are given in
Table I.

The data set consists of the following reactions: (1) ac-
tivation energy for the symmetric SN2 reaction of Cl− and
propyl chloride; (2) acid hydrolysis of dimethylether to form
methanol; (3) deprotonation of the phenol hydroxyl group;
(4) ring-closing isomerization of 3-methylene-1-heptene to
form butylcylobutane; (5) the Diels-Alder reaction of 2-
methoxy-1,3-butadiene with methyl vinyl ketone; and (6) the
activation energy for the Diels-Alder reaction. The geometries
are provided in the supplementary material.69
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TABLE I. CCSD(T) reaction energies and barriers in the test set obtained
using cc-pVTZ with aug-cc-pV(T+d)Z on Cl, and aug-cc-pVTZ for all atoms
for reactions 2–4.56, 57 For ease of error analysis, we adopt a sign convention
in which all reactions or activation processes are positive in energy. Geome-
tries were obtained using B3LYP with 6-311G*++ (reaction 1), def2-TZVP
(reactions 2–4), or 6-31G* (reactions 5, 6).58–61

Reaction E/mEh

1 SN2 activation barrier 7.8
2 Acid hydrolysis 177.8
3 Phenol deprotonation 568.8
4 Ring closing 10.6
5 Diels-Alder reaction 63.1
6 Diels-Alder barrier 34.0

C. Sources of error in WFT-in-DFT embedding

1. Error from the embedding potential

Now we discuss how comparison of terms in the energy
expressions for CCSD(T) and CCSD(T)-in-DFT embedding
can be used to determine the error arising from the embedding
potential. The energy of subsystem A from the CCSD(T) cal-
culation is the sum of the HF energy (using the KS density)
and the correlation energy of subsystem A,

EA
CCSD(T) = EHF[γ A] + EA

(S) + EA
(D) + EA

(T). (14)

The total energy of subsystem A from a CCSD(T)-in-
DFT embedding calculation is

EA
emb = 〈�A|Ĥ A in B[γ A, γ B]|�A〉

− tr[γ A(hA in B[γ A, γ B] − h)]. (15)

For an embedding potential that includes all of the CCSD(T)
many-body effects, the energy of EA

CCSD(T) and EA
emb would

be identical; therefore, the error arising from the embedding
potential is calculated as

Eerror
pot = EA

emb − EA
CCSD(T). (16)

The error in the reaction energies arising from the em-
bedding potential is therefore the change in Eerror

pot between
products and reactants, �Eerror

pot .
The blue squares in Figure 1 show the value of �Eerror

pot
for the data set, compared to the total CCSD(T)-in-B3LYP
embedding error shown in the black circles. For no system is
the error larger than 1.5 mEh, with the average error being
0.8 mEh. This demonstrates a key insight of this paper, which
is that the embedding potential calculated using WFT-in-DFT
embedding is very accurate.

2. Error from use of DFT for subsystem B

Next, we quantify the WFT-in-DFT embedding error re-
sulting from treating subsystem B using DFT. This error is
obtained by computing

E
B,error
DFT = EDFT[γ B]

− (
EHF[γ B] + EB

(S) + EB
(D) + EB

(T)

)
, (17)

which allows for a direct comparison of the DFT and
CCSD(T) energies of subsystem B.

1

2

3

4

5

6

-5 0 5         10         15

R
ea

ct
io

n

Error (mEh)

FIG. 1. The error arising from the embedding potential (blue squares), the
DFT energy of subsystem B (violet triangles), and the nonadditive exchange-
correlation energy (green diamonds) compared to the total CCSD(T)-in-
B3LYP embedding error (black circles). CCSD(T) calculations performed
on the full system are used as the reference. The largest source of error is the
nonadditive exchange-correlation energy functional.

The values calculated for �E
B,error
DFT are shown in Figure 1

as violet triangles. The largest error in this data set is 2.5 mEh

and the average error is 1.5 mEh. These errors are larger than
those resulting from the embedding potential, but are still rel-
atively small compared to the total WFT-in-DFT embedding
error. Therefore, for this data set, DFT does an adequate job
describing the energy change localized within the environ-
ment and is not the dominate source of error.

3. Error from the nonadditive
exchange-correlation energy

Finally, we analyze the error that arises from evaluation
of the nonadditive exchange-correlation energy with an ap-
proximate functional. The error is obtained by computing

Enad,error
xc = Enad

DFT[γ A, γ B]

− (
Enad

HF [γ A, γ B] + Enad(D)
corr + Enad(T)

corr

)
, (18)

which allows for the direct comparison of the approximate
density functional to the energy obtained at the CCSD(T)
level.

The values for �Enad,error
xc are given in Figure 1 as green

diamonds. This term dominates the WFT-in-DFT embedding
error, with the largest value of �Enad,error

xc being 14.2 mEh,
and the average value being 7.2 mEh. It is thus this term that
is responsible for introducing the largest error in the WFT-in-
DFT embedding methodology.

The sum of �Eerror
pot , �E

B,error
DFT , and �Enad,error

xc captures
all of the discrepancy between the CCSD(T)-in-DFT calcula-
tions and the CCSD(T) calculations performed over the full
system. Due to the use of density fitting and the noniterative
triples approximation used in the CCSD(T) calculation, the
sum of these errors is off by an average of 0.4 mEh compared
to the total CCSD(T)-in-B3LYP embedding error; this makes
no difference in the interpretation of the data.

To confirm that our results are not sensitive to the ap-
proximate exchange-correlation functional, we repeated the
analysis using both PBE62 and M0663 (not shown). These
conclusions are robust with respect to the approximate
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exchange-correlation functional. The nonadditive exchange-
correlation energy remains the largest source of error, fol-
lowed by the DFT energy of subsystem B. Again, we find that
DFT, for all of the functionals tested, provides very accurate
embedding potentials.

D. Improvement of the nonadditive
exchange-correlation energy

Having determined the nonadditive exchange-correlation
energy to be the dominate source of error, new algorithms
can be proposed to calculate this term more accurately. One
approach would be to evaluate the nonadditive exchange ex-
actly and to use a computationally cheap WFT method, such
as MP2,64 to evaluate the nonadditive correlation. The re-
sulting correction to the WFT-in-DFT embedding energy is
then

E�MP2
xc = Enad

HF

[
γ̃ A

HF , γ B
] +

∑
i∈A

j∈B

∑
rs

(
2T ij

rs − T ij
sr

)
Kij

rs

−Enad
DFT[γ A, γ B]

−tr
[(

γ̃ A
HF − γ A

)
(hA in B[γ A, γ B] − h)

]
, (19)

where γ̃ A
HF is the HF embedded density of subsystem A, T

ij
rs

is the MP2 amplitude, and K
ij
rs are the exchange two electron

integrals.65 For the MP2 calculation, the orbitals {φ̃A
i } ∪ {φi}B

are used, which allows for the direct calculation of the MP2
correlation between the HF orbitals for A and the KS orbitals
of B.

Figure 2 compares the CCSD(T)-in-B3LYP embedding
error (black) to the MP2-corrected CCSD(T)-in-B3LYP em-
bedding error (red). The average error of WFT-in-DFT em-
bedding is 4.6 mEh, which drops to 1.2 mEh when the MP2
correction is applied. Alternatively, instead of calculating the
full MP2 energy in Eq. (19), one could only calculate the
scaled opposite spin (SOS)-MP2 correlation energy.66 Scal-
ing the opposite spin MP2 correlation by the usual empirical
factor of 1.3 leads to the SOS-MP2-corrected CCSD(T)-in-
B3LYP embedding error shown in blue in Figure 2. Apply-
ing the SOS-MP2 correction results in an average error of
1.1 mEh, which is essentially the same error as that of the full
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FIG. 2. Bar graph of the error in the energy obtained from CCSD(T)-in-
B3LYP embedding (black), MP2-corrected CCSD(T)-in-B3LYP embedding
(red), and SOS-MP2-corrected CCSD(T)-in-B3LYP embedding. CCSD(T)
calculations performed on the full system are used as the reference.

MP2 correction, and only requires computations that scale N4

compared to N5 for the full MP2 energy.
The average error of standard MP2 calculations on these

systems is 6.3 mEh relative to CCSD(T); it is thus clear that
effectiveness of the MP2 correction does not rely on the MP2
energy being particularly accurate for the description of the
full system. Instead, we observe that MP2 theory accurately
represents the correlation energy between subsystems A and
B, while not necessarily representing other correlation terms
accurately. This is consistent with other local coupled-cluster
methods that treat distant pairs at the MP2 level.47

IV. RESULTS II: CONTINUITY, CONVERGENCE,
AND CONJUGATION IN WFT-IN-DFT EMBEDDING

A. Potential energy surfaces

Next, we examine the potential energy surface for het-
erolytic bond cleavage. Local correlation methods show dis-
continuities in the potential energy surface for the heterolytic
bond cleavage of CO dissociation in ketene.67 Here, we study
a related system, CO dissociation in 1-penten-1-one.

Figure 3(a) shows potential energy curves calculated
using CCSD(T), B3LYP, and CCSD(T)-in-B3LYP embed-
ding. The cc-pVDZ basis was used for all calculations. Here,
B3LYP performs relatively well near equilibrium, but over-
estimates the energy by up to 16 mEh near dissociation.
The CCSD(T)-in-B3LYP calculations are very accurate near

(a)

(b)

(c)

(d)

FIG. 3. (a) Potential energy curves for the dissociation of the C-C bond
in singlet 1-penten-1-one obtained using CCSD(T) (green), KS-DFT with
B3LYP (blue), and CCSD(T)-in-B3LYP embedding (black). The structure
was reoptimized at the HF/cc-pVDZ level of theory for each value of the
C-C bond distance.56 The O=C=CH– moiety was treated at the CCSD(T)
level for the CCSD(T)-in-B3LYP embedding calculations. (b)–(d) The er-
ror in CCSD(T)-in-B3LYP embedding (black) and MP2-corrected CCSD(T)-
in-B3LYP embedding (red) as a function of distance between the carbon-
carbon double bond. The results are shown for three partitionings of the
molecule, with subsystem A corresponding to (b) =C=CH– (18 electrons),
(c) O=C=CH– (22 electrons), or (d) O=C=CH–CH2– (30 electrons).
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equilibrium and slightly underestimate the energy near the
dissociation limit. MP2-corrected CCSD(T)-in-B3LYP were
also performed for this system; the results are not shown
in panel A of Figure 3, because they are graphically in-
distinguishable from the uncorrected CCSD(T)-in-B3LYP
results.

Figures 3(b)–3(d) show the error in CCSD(T)-in-B3LYP
embedding and MP2-corrected CCSD(T)-in-B3LYP em-
bedding for three different subsystem partitionings of the
molecule. The error and the change of the slope at the deriva-
tive discontinuity around 1.5 Å decreases by treating more
of the system at the CCSD(T) level. Energy discontinuities
of 50 μEh are seen at short distances, as shown in Figure 1
of the supplementary material.69 Like other local correlation
methods, abrupt changes in the localized orbitals for different
nuclear configurations lead to discontinuities in the WFT-in-
DFT embedding energy and its derivatives. Here, these de-
fects are small and can be systematically controlled by in-
creasing the size of subsystem A.

B. WFT-in-DFT embedding of conjugated systems

A demanding case for any embedding methodology is the
partitioning of a π -conjugated system. The applicability of
WFT-in-DFT embedding to treat such systems is tested and
compared to systems without conjugation.

First, we consider the dissociation of a fluoride anion
from both an alkane chain (1-fluorodecane) and an alkene
chain (1-fluoro-1,3,5,7,9-decapentaene). The geometries for
both compounds and their dissociated products were obtained
using B3LYP/def2-TZVP. All CCSD(T) and embedding cal-
culations were performed using the cc-pVDZ basis, with aug-
cc-pVDZ for fluorine.56

Figure 4(a) shows the CCSD(T)-in-B3LYP with and
without the MP2 correction for fluoride anion dissociation
from the alkane chain. Results are provided for a number of
different choices of the subsystem partitioning, and the error
of both methods can be seen to rapidly vanish as more atoms
are included in the WFT subsystem.

The individual sources of error in the CCSD(T)-in-
B3LYP embedding calculations, computed in the same way
as in Sec. III C, are shown in Figure 4(b). Again, it is observed
that the error arising from the embedding potential is small,
accounting for only a small portion of the total error. Unlike
previous results, the error arising from treating subsystem B
at the DFT level is of similar magnitude as the nonadditive
exchange-correlation energy error. As these errors are of op-
posite sign, evaluating the nonadditive exchange-correlation
energy using DFT leads to a favorable cancelation of error.
The MP2 correction only increases the accuracy of the sub-
system interaction energy, and cannot be expected to correct
large errors associated with the DFT energy of subsystem B.

Figure 4(c) shows the Mulliken population of the density
associated with subsystem B on the atoms associated with
subsystem A. In the dissociated product, the density asso-
ciated with subsystem B distributes onto the atoms of sub-
system A to stabilize the positive charge. We find that when
the difference of this quantity is large between two config-
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FIG. 4. (a) The error in CCSD(T)-in-B3LYP embedding (black open circles)
and MP2-corrected CCSD(T)-in-B3LYP embedding (red filled circles) as a
function of the number of carbons included in subsystem A for the disso-
ciation of the alkane. The B3LYP energy is given by the black dotted line.
(b) Contributions to the WFT-in-DFT error: embedding potential (blue open
circles), DFT for subsystem B (violet filled circles), and DFT for nonadditive
exchange-correlation energy (green squares). (c) DFT Mulliken population of
the density associated with subsystem B on the atoms in subsystem A, shown
for 1-fluorodecane (black open circles) and the dissociated alkane chain (red
filled circles).

urations, there is typically a favorable cancelation of error
between the error arising from treating subsystem B using
DFT and the error arising from evaluating the nonadditive
exchange-correlation energy using DFT. In general, we note
that if the nonadditive exchange-correlation is not the domi-
nant source of error, the MP2 correction cannot significantly
improve the accuracy of the embedding calculation.

After dissociation of the fluoride anion from 1-fluoro-
1,3,5,7,9-decapentaene, the subsequent geometry optimiza-
tion leads to an isomerization where the proton on the sec-
ond carbon moves to the first. Therefore, the analysis for
this reaction begins at the second carbon. Figure 5(a) shows
the error in CCSD(T)-in-B3LYP embedding (black open
circles) and MP2-corrected CCSD(T)-in-B3LYP embedding
(red filled circles) as a function of the number of carbons in-
cluded in subsystem A for fluoride anion dissociation from
1-fluoro-1,3,5,7,9-decapentaene. Unlike the alkane case, the
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FIG. 5. (a) The error in CCSD(T)-in-B3LYP embedding (black open cir-
cles) and MP2-corrected CCSD(T)-in-B3LYP embedding (red filled circles)
as a function of the number of carbons included in subsystem A for the
dissociation of the alkene. The B3LYP energy is given by the black dotted
line. (b) Contributions to the WFT-in-DFT error: embedding potential (blue
open circles), use of DFT for subsystem B (violet filled circles), nonadditive
exchange-correlation energy (green squares). (c) DFT Mulliken population of
the density associated with subsystem B on the atoms in subsystem A, shown
for 1-fluoro-1,3,5,7,9-decapentaene (black open circles) and the dissociated
alkene chain (red filled circles).

alkene case exhibits large errors which slowly decrease once
the majority of the system is treated at the CCSD(T) level.

Figure 5(b) shows the decomposition of the contributions
to the error in CCSD(T)-in-B3LYP embedding. In this calcu-
lation, the error arising from treating subsystem B using DFT
is the dominate source of error. This explains why the error
remains large until the majority of the system is treated at the
CCSD(T) level, and why the MP2-correction is insufficient to
reduce the error.

Figure 5(c) shows the Mulliken population of the den-
sity associated with subsystem B on the atoms associated
with subsystem A for the alkene case. As with the alkane
case, a large difference in this quantity is seen between
the fluorinated and defluorinated compounds. This observa-
tion provides insight into why the error from the DFT en-
ergy of B contributes strongly to the error of the embedding
calculations.

TABLE II. The magnitude of the change in the dipole moment between
products and reactants for the dissociation of F− from the alkane and alkene
chains, as well as the corresponding magnitudes for the H-F exchange reac-
tion. Values are reported in atomic units.

Method Dissociation Exchange

Alkane B3LYP 7.338 0.781
CCSD 7.539 0.802

Alkene B3LYP 1.702 0.551
CCSD 3.034 0.630

The magnitude of the change in the dipole moment be-
tween the fluorinated and defluorinated compounds is shown
in Table II for KS-DFT with B3LYP and CCSD. In the
alkane dissociation, the change in the dipole moment is large,
demonstrating a small polarizability, and there is good agree-
ment between KS-DFT and CCSD. In the alkene dissocia-
tion, the change in dipole moment is considerably smaller
than the alkane case, demonstrating that the density polar-
izes to stabilize charge. For the alkene, there is large dis-
agreement between KS-DFT and CCSD, demonstrating the
known failure of DFT to accurately treat polarizability though
a π -conjugated system.68 Therefore, when there are large er-
rors associated with KS-DFT, these large errors will affect the
DFT energy of subsystem B, causing large WFT-in-DFT em-
bedding errors. We emphasize that for cases in which DFT
does correctly describe the polarization of the environment,
this large source of error does not arise. The failure of WFT-
in-DFT embedding in Figure 5 is not a failure of embedding
itself, but rather a failure of DFT to accurately treat the polar-
izability of π -conjugated systems.

Finally, we consider the reaction of exchanging the
fluoride anion from 1-fluorodecane and 1-fluoro-1,3,5,7,9-
decapentaene with a hydride (Figure 6). The change in dipole
moment for these reactions is provided in Table II. These reac-
tions exhibit a moderate change in dipole moment, and there
is good agreement between CCSD and KS-DFT.

Figures 6(a) and 6(b) plot the error in the CCSD(T)-in-
B3LYP embedding and MP2-corrected CCSD(T)-in-B3LYP
embedding energies for the hydride exchange reactions from
alkane and alkene chains, respectively, as a function of the
number of carbons included in subsystem A. For every parti-
tion, the errors are small. For the smallest division, the MP2
correction provides a significant improvement in the accuracy
of the CCSD(T)-in-B3LYP embedding energy; for larger di-
visions, the effect of the MP2 correction is much smaller. Un-
like in the case of fluoride anion dissociation, DFT applied
to the hydride exchange reaction accurately represents the
change in dipole. As there are no large errors arising from the
DFT energy of subsystem B, WFT-in-DFT embedding per-
forms accurately and the MP2 correction further improves the
energetics.

The important observation from these calculations is that
when there is a large error in the DFT calculation on the
environment, there will be correspondingly large errors in
the WFT-in-DFT embedding energy. Importantly, this fail-
ure is associated with errors intrinsic to the DFT func-
tionals, and does not arise due to errors in the embedding
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FIG. 6. The error in CCSD(T)-in-B3LYP embedding (black open circles)
and MP2-corrected CCSD(T)-in-B3LYP embedding (red filled circles) as a
function of the number of carbons included in subsystem A for the exchange
of fluoride to a hydride in (a) 1-fluorodecane and (b) 1-fluoro-1,3,5,7,9-
decapentaene.

potential. When a chemical process involves a large change in
the Mulliken population of subsystem B located on the sub-
system A atoms, it is likely that the embedding error will be
dominated by errors arising from the DFT-level treatment of
subsystem B; errors of this sort cannot be reduced by the MP2
correction.

V. CONCLUSIONS

Projector-based quantum embedding provides a scheme
for multiscale descriptions with the exactness property that
DFT-in-DFT is equivalent to DFT on the whole system.36, 37

In many tests and applications, we find the accuracy of the
scheme to be excellent, allowing for aggressive partitioning
across covalent bonds close to the reactive center of the sys-
tem of interest. However, for some applications, the errors in-
troduced by embedding are larger than would typically be ac-
ceptable, and the principal aims of this paper have been to
understand and take steps towards resolving the errors in such
cases.

Careful comparison of CCSD(T)-in-DFT embedding cal-
culations with CCSD(T) calculations performed over the full
system has led to key insights regarding the sources of error
in the embedding calculations. First, the embedding potential
obtained using approximate density functionals is found to be
accurate for all of the cases we have investigated, making a
contribution to the overall error of the embedding calculation
that is negligible compared to other sources of error. It was
not immediately obvious that this would be the case, because
functionals (particularly in cases where they are parameter-
ized) are designed with accurate energies in mind.

And second, it is found that in many cases, the primary
source of error in CCSD(T)-in-DFT embedding is the treat-
ment of nonadditive exchange-correlation effects with an ap-
proximate density functional. This is important because it is

the one term in the error for which simple corrections can be
developed that conserve the efficiency of the original method.
Here, we found that use of MP2 or SOS-MP2 corrections for
this term typically improved the accuracy of the energetics for
chemical reactions, reducing the average error from 4.6 mEh

to 1.2 mEh with respect to CCSD(T) calculations performed
over the full system.

To investigate the convergence with respect to the size of
subsystem A, we studied dissociation and exchange events at
the terminus of 10-carbon alkyl and conjugated chains. For
the removal of F−, the results of the CCSD(T)-in-DFT em-
bedding calculation for the conjugated system are noticeably
worse than for the alkane, and it is found that the MP2 cor-
rection does not reduce this error in the computed reaction
energy. Our analysis shows, however, that these results follow
from the fact that DFT provides a poor description of the po-
larization of the charged alkene fragment and that the uncor-
rected CCSD(T)-in-DFT results benefit from a cancellation of
errors in the DFT treatment of subsystem B and in the DFT
treatment of nonadditive exchange-correlation. The MP2 cor-
rection improves the description of nonadditive energy term,
but it does not compensate for the inaccuracies in the DFT
description of subsystem B.

For a hydride exchange reaction at the terminus of
the alkyl and conjugated chains, the CCSD(T)-in-DFT em-
bedding results converge smoothly and rapidly to reference
CCSD(T) calculations performed over the full system, regard-
less of inclusion of the MP2 correction and regardless of con-
jugation in the chain. These results demonstrate that in the
regime where DFT is adequate for the treatment of the en-
vironment, our projector-based embedding scheme can effec-
tively partition the system, even in conjugated molecules.

The current work demonstrates that projection-based em-
bedding provides both a rigorous and practical approach to
embedding correlated wavefunctions in a DFT description of
the environment. Although the results presented here utilize
coupled-cluster methods for describing the correlated wave-
fuction, we emphasize that projection-based embedding can
be combined just as easily with multi-reference electronic
structure methods, as well as any mean-field description of
the environment. The embedding method is straightforward
to employ—requiring only the specification of which atoms
are to be treated at the WFT and DFT levels of theory—and
it is fully implemented and available in the MOLPRO quantum
chemistry package.
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