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Abstract

Developmental exposure of mouse fetuses to estrogens results in dose-dependent permanent effects on prostate
morphology and function. Fetal prostatic mesenchyme cells express estrogen receptor alpha (ERa) and androgen receptors
and convert stimuli from circulating estrogens and androgens into paracrine signaling to regulate epithelial cell proliferation
and differentiation. To obtain mechanistic insight into the role of different doses of estradiol (E2) in regulating mesenchymal
cells, we examined E2-induced transcriptomal changes in primary cultures of fetal mouse prostate mesenchymal cells.
Urogenital sinus mesenchyme cells were obtained from male mouse fetuses at gestation day 17 and exposed to 10 pM,
100 pM or 100 nM E2 in the presence of a physiological concentration of dihydrotestosterone (0.69 nM) for four days. Gene
ontology studies suggested that low doses of E2 (10 pM and 100 pM) induce genes involved in morphological tissue
development and sterol biosynthesis but suppress genes involved in growth factor signaling. Genes involved in cell
adhesion were enriched among both up-regulated and down-regulated genes. Genes showing inverted-U-shape dose
responses (enhanced by E2 at 10 pM E2 but suppressed at 100 pM) were enriched in the glycolytic pathway. At the highest
dose (100 nM), E2 induced genes enriched for cell adhesion, steroid hormone signaling and metabolism, cytokines and their
receptors, cell-to-cell communication, Wnt signaling, and TGF- b signaling. These results suggest that prostate mesenchymal
cells may regulate epithelial cells through direct cell contacts when estrogen level is low whereas secreted growth factors
and cytokines might play significant roles when estrogen level is high.
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Introduction

The mouse prostate begins to differentiate from the urogenital

sinus (UGS) at gestation day 17, soon after the onset of

testosterone secretion by the fetal testes [1–2]. Prostate duct

development is initiated by mesenchymal influences and results in

the formation of epithelial cell outgrowths, or epithelial buds. This

event is dependent on mesenchymal conversion of testosterone to

5a-dihydrotestosterone (DHT), which is a higher-affinity androgen

receptor (AR) ligand [1,3]. Androgen receptor gene (Ar) expres-

sion in prostatic mesenchyme is required for the continued normal

growth and branching morphogenesis of epithelial ducts [4,5].

Although differentiation of the prostate is androgen-dependent,

there is now considerable evidence that estrogens act to modulate

the activity of androgen in regulating prostate development.

During development, the mouse and rat UGS mesenchyme

expresses both Ar and estrogen receptor- a (Esr1). In contrast,

epithelial cells exhibit little androgen binding at this time, and Ar

expression in UGS epithelium is not required for differentiation

[6,7,8]. Since the growth of epithelial cells requires signals from

the UGS mesenchyme [9], and since fetal UGS epithelial cells do

not express estrogen receptors (ER) [8,10], proliferative responses

of the epithelial compartment to estrogens have been presumed to

be driven by stimuli from mesenchymal cells.

We and others have shown that prenatal exposure of male

mouse fetuses to estradiol-17b (E2), estrogenic drugs such as

diethylstilbestrol (DES) and ethinylestradiol, or industrial estro-

genic chemicals such as bisphenol A (BPA), induce an increase in

the number of developing prostatic glands and an increase in

prostate gland size during fetal life due to basal epithelial cell

hyperplasia [11,12,13]; there is also a permanent increase in

prostatic AR [11]. However, effects of prenatal estrogen exposure

do not follow a monotonic dose response [14], and effects on the

developing prostate at high and low concentrations may be very

different [11,12,13]. We recently reported that the exposure of

primary culture fetal mouse prostate mesenchyme cells to E2

enhanced expression of both Ar and Esr1 [14] in a non-monotonic

manner. In the present study, we sought to identify other estrogen-

regulated genes in mesenchymal cells and to compare effects of

low (physiological) and high (pharmacological) concentrations of
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E2 on gene expression while the concentration of DHT was held

constant. We show here that gene expression is dose-dependent

but that expression profiles differ at low and high doses.

Materials And Methods

Ethics Statement
All animal procedures were approved by the University of

Missouri Animal Care and Use Committee (protocol number:

6489) and conformed to the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

program is fully accredited by the Association for Assessment &

Accreditation of Laboratory Animal Care, International (AAA-

LAC).

Animals
CD-1 mice were purchased from Charles River Laboratories

(Wilmington, MA) and maintained as an outbred stock at the

University of Missouri. Animals were housed on corncob bedding

in standard (11.567.5650) polypropylene cages. Water was

purified by reverse osmosis and carbon filtration and provided in

glass bottles ad libitum. Pregnant and lactating females were fed

Purina 5008 chow, and otherwise were maintained on Purina

5001 chow. Rooms were maintained at 2562uC under a 12:12

L:D cycle.

Tissue collection, primary cell culture, and dosing
Timed-pregnant females were killed on gestation day (GD) 17

(mating = GD 0) by CO2 asphyxiation, and fetuses were removed

from the uterine horns. The bladder and UGS were removed from

male fetuses as previously described [8,11], and the prostatic

region of the UGS was separated from the bladder at the bladder

neck and the lower UGS just below the ejaculatory ducts. UGS

tissue was disrupted by collagenase treatment as described [14].

Epithelial and mesenchymal cells in the suspension were separated

by gravity, since the epithelial cells settle and the mesenchymal

cells remain suspended. The composition of the two cell type

fractions was confirmed by immunofluorescence staining of

cytokeratins with mouse anti-pan-cytokeratin clone PCK-26

fluorescein isothiocyanate conjugate (Sigma), and co-staining with

the mesenchymal cell marker vimentin with goat anti-vimentin

(Sigma) and rabbit anti-goat Cy3 conjugate (Sigma) ([15], data not

shown). For these studies, epithelial cells were discarded and the

collected mesenchymal cells were cultured at 37uC under 5% CO2

in RPMI-1640 medium without phenol red (Gibco, Grand Island,

NY), supplemented with 2 mM L-glutamine, 100 units penicillin

G sodium/ml, 100 mg streptomycin sulfate/ml, and 0.25 mg

fungizone/ml. 10% fetal bovine serum (FBS) (U.S. Bio-Technol-

ogies, Parkerford, PA) was added to this initial growth medium

and was not stripped of endogenous steroid hormones. Cells were

grown to 95% confluence (approximately 3–5 days), and then

passaged by digestion with 0.05% trypsin in 0.53 mM EDTA

(Gibco) for 5 min at room temperature.

First passage cells were used in these experiments and were

seeded at 3.26105 cells/well in 35 mm dishes. Cells were seeded

in complete RPMI medium with endogenous hormones removed

by substituting 5% (v/v) charcoal-stripped FBS and 5% (v/v)

charcoal-stripped horse serum (Sigma, St. Louis, MO) for the 10%

whole FBS, and further supplementing with ITS supplement

(Cambrex, Walkersville, MD), for final concentrations of 10 mg

insulin/ml, 10 mg transferrin/ml, and 10 ng selenium/ml. This

medium was further supplemented with 690 pM DHT (200 pg/

ml). Cells were treated with DHT rather than testosterone for two

reasons. First, we wanted to control E2 exposure, since the

developing prostate expresses aromatase [16] and unlike testos-

terone, DHT is not aromatized to E2 [5]. Second, we aimed to

control the androgen concentration due to the potential for these

compounds to alter 5a-reductase activity [17]. Cells were

maintained in estrogen-free medium for three days, with one

medium change, before the start of estrogen treatment, and then

treated with either low doses (10 pM and 100 pM) or a high dose

(100 nM) of E2 [14], selected based on our previous work (14).

Negative controls were treated with the treatment vehicle, 0.05%

ethanol. Cells were treated for four days with daily medium

changes, with three replicate samples per treatment. At the end of

the treatment period the cells were washed once with PBS, and

immediately lysed on ice in Trizol (Invitrogen, Carlsbad, CA).

Microarray Analysis
Total RNA was isolated from the Trizol lysate and purified with

the RNeasy Mini kit (Qiagen, Valencia, CA) according to the

manufacturers’ instructions, and RNA quality was checked on an

Agilent Bioanalyzer (Agilent, Palo Alto, CA). The transcriptomal

profiles were determined using Affymetrix mouse ST 1.0 or 430A

microarrays. Scanned image data were converted into numerical

tables using Affymetrix GeneChip Operating Software and Gene

Expression Console. Data analysis and mining, including gene

ontology enrichment analysis, were performed using GeneSifter

server (Giospiza Inc., Seattle, WA) and Partek Genomics Suite

(Partek Inc., St. Louis, MO). Microarray data were deposited in

NCBI Gene Expression Omnibus (accession numbers GSE16854

and GSE36630).

Quantitative PCR (qPCR) measurement of gene
expression

To confirm the relative changes in gene expression induced by

estradiol, we used a real-time quantitative reverse transcriptase-

polymerase chain reaction (qPCR) approach for selected tran-

scripts [18]. These data were previously reported elsewhere,

compared with results for BPA treatment [19]; that article is

attached here in Supporting Information. Fetal mouse UGS

mesenchyme cells were treated in vitro for four days as described

with either 100 nM 17b-estradiol or the ethanol vehicle (0.05%)

alone; treatments were performed in triplicate wells within each

experiment, and analyses were conducted on RNA preparations

from three independent experiments. Total RNA was isolated with

the RNAqueous kit (Ambion, Austin, TX) according to the

manufacturer’s instructions, and quantified by absorbance at

260 nm. Expression of specific mRNAs were measured by one-

step real time Rt-PCR as described [20] using the TaqMan EZ

RT-PCR kit (PE Applied Biosystems, Foster City, CA) on the ABI

Prism 7700 Sequence Detection System (PE Applied Biosystems).

Assays for each mRNA were carried out in duplicate. The primer/

probe set for Ar was designed using Primer Express software (PE

Applied Biosystems), as described [14]. Ar primers were synthe-

sized by Invitrogen, and the Ar probe was synthesized by Applied

Biosystems. The concentrations of Mn2+, probe and primers were

optimized for the primer/probe set. Other analyses were

performed using validated ABI Taqman Gene Expression assays

(Applied Biosystems). Assays for each mRNA were carried out in

duplicate. ABI Taqman Gene Expression assays used for specific

transcripts were: Mm00433149_m1 (Esr1), Mm00432087_m1

(Bmp4), Mm00500361_m1 (Capn6), Mm00484157_m1 (Cyp7b1),

Mm00840104_m1 (Sfrp4) and Mm00449036_m1 (Thbs2). These

primers spanned Esr1 exons 3–4, Bmp4 exons 2–3, Capn6 exons

2–3, Cyp7b1 exons 4–5, Sfrp4 exons 4–5 and Thbs2 exons 1–2.

The relative concentrations of specific mRNAs in each sample

were normalized to total RNA per well, as described [20,21].

Estrogen-Regulated Genes in Fetal Prostate Cells
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Normalization to total RNA allowed for comparisons between

independent experiments and provided a conservative estimate of

relative amounts of mRNA. Differences between control and

estradiol -treated cells were evaluated using the ANOVA GLM

procedure in SAS. Comparisons of mean reciprocals for each dose

relative to controls were made using the LS Means Test in SAS.

The criterion for statistical significance was P#0.05 (two-tailed).

Results

Microarray analysis of effects of low (10 pM and 100 pM)
concentrations of E2 on gene expression in fetal mouse
prostate cells

Exposure of the primary culture mouse prostate mesenchymal

cells significantly affected expression of 628 genes (ANOVA,

p,0.01, unadjusted). Benjamini-Hochberg correction of multiple

testing eliminated these effects, reflecting the relatively low

statistical power of the present analysis due to the limited numbers

of samples in each group.

These 628 genes were subjected to hierarchical clustering,

which classified them into seven groups, based on induction or

suppression of gene activity and on relative sensitivity to E2

(Figure 1). The seven groups were categorized as: 1) E2-inducible,

high sensitivity genes; 2) E2-inducible, moderate sensitivity genes;

3) E2-inducible, low sensitivity genes; 4) U-shaped dose-response

genes; 5) E2-suppressible, high sensitivity genes; 6) E2-suppress-

ible, low sensitivity genes; and 7) Inverted U-shaped dose-response

genes. Gene Ontology (GO) analysis was performed on these

groups of genes using g:Profiler [22,23] and DAVID [24,25].

Analysis of GO enrichment of E2 inducible genes (Figure 2)

indicated effects on pathways for Cell Adhesion, EGF-like

Calcium Binding, Sterol Biosynthesis, and Actin Filament &

Cytoskeleton. Results for all E2-inducible genes, from groups 1, 2

and 3, were similar, and together suggested changes in cell

adhesion, morphology, and sterol biosynthesis. Analysis of genes

with a U-shaped dose response (Group 4, data not shown) did not

yield specific GO/pathway effects. Analysis of E2- suppressible

genes (Figure 3) indicated no specific pathway effects within the

highly sensitive gene set (Group 5), but nor indicated significant

effects within Group 6, the E2-suppressible, low sensitivity genes,

on pathways related to extracellular matrix, Cell adhesion, EGF-

like growth factor binding, IGF binding, Thyroglobulin, Throm-

bospondin, Ossification, and Somatomedin B. Overall, these

pathways suggested changes in cell adhesion and reduced growth

factor signaling.

For the 34 genes showing an inverted U-shape dose response

(Figure 4A), pathway analysis strongly indicated effects on sugar

metabolism. Synchronized changes in mRNA expression of key

genes suggest enhancement of glycolysis by 10 pM E2 but

significant suppression by 100 pM E2. (Figure 4B). Specific effects

within the Glycolysis pathway are illustrated in Figure 5.

Microarray analysis of effects of a high (100 nM)
concentration of estradiol on gene expression in fetal
mouse prostate cells

After filtering the data in GeneSifter, using a 1.5-fold expression

ratio criterion between control and estradiol treatment and

a statistical cutoff at P#0.05, and discarding genes with expression

levels less than 10 fluorescence units in both treated and control

samples, it was determined that 181 genes were activated by

100 nM E2 exposure and 86 genes were repressed.

The results of Gene Ontology functional enrichment analysis,

within the categories of Biological Process and Molecular

Function, are shown in Table 1, and categories significantly

affected by the 100 nM E2 treatment were identified by z-scores.

These included effects on growth, reproductive processes, and

Figure 1. Cluster analysis of estrogen-responsive genes in fetal
UGS mesenchyme cells after estrogen treatment with the two
lower doses, showing strong separation of responses to
control, 10 pM E2, and 100 pM E2 treatments. Based on
clustering, genes were identified as falling into one of 7
groups that differed in their responses to low-dose E2.
doi:10.1371/journal.pone.0048311.g001

Estrogen-Regulated Genes in Fetal Prostate Cells
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metabolic processes, and generally indicated effects of E2 on

promotion of growth and inhibition of apoptosis. Table 2 lists

genes in selected signaling pathways influenced by E2 treatment,

again identified using z-scores. Additional genes affected by E2

treatment, selected as being ‘‘of interest’’ in these and other

pertinent pathways, were identified manually. These data indicat-

ed significant effects of 100 nM E2 treatment on three key

pathways: cell communication, androgen and estrogen metabo-

lism, and the TGF-b signaling pathway. E2-regulated genes were

also identified in other pathways of interest, namely the Wnt

signaling pathway, cytokine-cytokine receptor interaction, sonic

hedgehog signaling and apoptosis.

Confirmation of estrogen-regulated genes
The expression patterns of several genes demonstrated to be up-

or down-regulated by estradiol treatment using microarray

analysis were validated in independent samples using quantitative

PCR. The genes selected were: Ar, Bmp4, Capn6, Cyp7b1, Esr1,

Sfrp4, and Thbs2. Ar and Esr1 were chosen because we have

shown by qPCR [14] that estradiol stimulates Ar and Esr1 mRNA

expression. The other genes were selected based on strength of

response and relevance to cell growth. In this particular study, the

effects of estradiol on Ar expression, while in the same direction as

predicted by earlier studies, did not quite reach significance by

microarray analysis. The results of the follow-up qPCR analysis

are shown in Fig. 6. The data obtained for cells treated with

estradiol are consistent with the microarray expression profiles.

Discussion

The effects of fetal E2 exposure on prostate development do not

follow a monotonic dose-response [11,12]. Previous studies have

shown that exposure of male mouse fetuses to a very small increase

in serum E2 [11], or to very low maternal doses of the estrogenic

drugs DES and ethinylestradiol or the xenoestrogen BPA, lead to

basal epithelial cell hyperplasia and to a permanent increase in

prostate AR binding activity, resulting in an increase in prostate

size in adulthood [11,12,13,26]. Those findings showed that at low

doses, estrogen has a stimulatory effect on the action of androgen

in regulating prostate differentiation and subsequent prostate

function, including development of early stage prostate cancer in

adulthood [27,28]. In contrast, opposite effects have been found at

much higher doses of E2 and xenoestrogens. Prenatal or neonatal

exposure of rats or mice to high doses of estrogens led to a decrease

in prostate growth during the time of exposure in development,

which led to reduced prostate size and androgen responsiveness in

adulthood [3,11,12,13,29,30].

Non-monotonic dose responses were seen in our initial

examination of the effects of estradiol and BPA on Ar and Esr1

expression in fetal mouse UGS mesenchyme [14], and dose-

related variation in the pattern of gene expression was also

Figure 2. Detail of E2-inducible genes in groups identified by clustering analysis. Set 1: E2-inducible high sensitivity. Set 2: E2- inducible
moderate sensitivity. Set 3: E2-inducible low sensitivity. Select genes of interest are highlighted. The figures show raw p values as well as, where
indicated, Benjamini-Hochberg corrected p values.
doi:10.1371/journal.pone.0048311.g002

Estrogen-Regulated Genes in Fetal Prostate Cells
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observed for a large number of genes in human MCF-7 breast

cancer cells, in response to doses of E2 between 10–100 pM [31].

Because of these prior findings as well as different in vivo effects of

high and low doses of estrogen, we chose to examine the effects of

E2 on gene expression in fetal prostate mesenchyme cells by

microarray analysis, using two low doses (10 pM and 100 pM) as

well as a high dose (100 nM) that had resulted in maximal Ar

expression in our prior study with the same fetal mesenchyme cells

[14]. In laboratory rats and mice, the free serum concentration of

E2 (unbound to plasma proteins and unconjugated) is about 2 pM

during the initial period of prostate development [11] although

calculation of the actual biologically active fraction of E2 during

sexual differentiation is complicated by uncertainty regarding the

bioavailability of albumin-bound E2 and the capacity for the

Figure 3. Detail of E2-suppressible genes in groups separated by clustering analysis. Set 5: E2-suppressible high sensitivity. Set 6: E2-
suppressible low sensitivity. The figures show raw p values as well as, where indicated, Benjamini-Hochberg corrected p values.
doi:10.1371/journal.pone.0048311.g003

Estrogen-Regulated Genes in Fetal Prostate Cells
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maternal-placental-fetal tissues to deconjugate sulfated estrogens

[32]. Total serum E2 during this period is in the range of 300 pM

[33], and thus the low doses of E2 used in this study are

physiologically relevant.

These microarray experiments were performed as a hypothesis

generation step for a study of effects of estrogens on prostate

development and differentiation, and the sample size is small.

Because of this, the data must be seen as preliminary, but the

results do indicate activation of different patterns of gene

expression and dominance of different pathways at low, physio-

logically relevant, compared to high, pharmacological, doses of

E2. Results from the lowest (10 pM and 100 pM) doses of E2

Figure 4. Detail of E2-suppressible genes in groups separated by clustering analysis. A) Set 7: Inverted U-curve. Both raw p values and
Benjamini-Hochberg corrected p values are given. B) Genes identified as part of the glucose metabolic pathway in panel A depicted as relative values
to illustrate the high association between dose and gene expression.
doi:10.1371/journal.pone.0048311.g004

Estrogen-Regulated Genes in Fetal Prostate Cells
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Figure 5. Glucose metabolism pathway. Highlighted genes (outlined in red) were influenced by lower dose estradiol treatment (10 pM and
100 pM) in an inverted U manner, suggesting enhancement of glycolysis by 10 pM E2 but suppression by 100 pM E2.
doi:10.1371/journal.pone.0048311.g005

Estrogen-Regulated Genes in Fetal Prostate Cells
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treatments indicate E2-inducible genes within pathways related to

cell adhesion, actin cytoskeleton reorganization, EGF-like calcium

binding, sterol biosynthesis and lipoprotein metabolism, and E2-

suppressible genes within pathways related to growth factor

signaling, tube development and additional effects on cell

adhesion. At the high (100 nM) concentration, E2 induced genes

enriched for steroid hormone signaling and metabolism, cytokines

and their receptors, cell-to-cell communication, and TGF-

b signaling (Table 2). Results from the 100 nM E2 treatment

thus indicated effects on cell adhesion pathways, but also

emphasized a stimulation of a positive feedback loop involving

steroid hormone receptors and genes related to growth and

metabolism that promote rather than inhibit cell growth. Taken

together, these results suggest that fetal prostate mesenchymal cells

may regulate epithelial cells through direct cell contacts when

estrogen levels in mesenchyme are in the pM range, whereas

growth factors might play significant roles when estrogen levels are

higher in the nM range.

Importantly, an inverted U (non-monotonic) response was seen

within the low-dose results, with enhancement of glycolysis

observed at 10 pM E2 but significant suppression at 100 pM E2

(Figure 5). The expression of these specific genes was not

influenced by 100 nM E2, indicating that the stimulation of

glycolysis is highly dependent on dose and only seen at low pM E2

concentrations. This is of particular interest given the Warburg

effect, the observation that most cancer cells rely on glycolysis to

generate the energy needed for cellular processes, in contrast to

normal differentiated cells that use mitochondrial oxidative

phosphorylation [34–35]. The enhancement of glycolysis seen in

our culture was only at the lowest dose tested here, 10 pM

(2.72 pg/ml), and as such is intriguing because mice exposed

prenatally to a very similar concentration of estradiol have

enlarged prostates in adulthood [11] relative to mice exposed to

higher doses. It is interesting to speculate on whether there is

a relationship between the enhancement of cell proliferation rate

and glycolysis seen in cancer cells, and the enhancement of

glycolysis in fetal prostate mesenchymal cells and increased

prostate size due to hyperplasia seen in mice.

Only 29 genes out of those screened were influenced by all doses

of estradiol examined (Table 3). For approximately half of these

genes the dose-response relationship was monotonic, although

some of these were maximally up- or down-regulated at the

100 pM dose. For the rest, the direction of the effect (stimulation

or suppression of gene expression) was either strongly reversed at

the highest (100 nM) E2 concentration (a non-monotonic

response), or simply showed a suggestion of reversal at the highest

dose. Of the monotonic profiles, two genes showed particularly

strong linearity with dose: Angpt2 (angiopoetin 2) and Sprr1a

(small proline-rich protein 1a). Angpt2 expression is strongly

correlated with prostate cancer progression [36] and is stimulated

by growth factors, especially VEGF [37–38]; Vegf expression is

stimulated by androgen treatment in fetal prostate fibroblasts [39],

but we did not observe an effect of estrogen on Vegf expression

here. Expression of Sprr genes is typically restricted to cells

committed to terminal differentiation [40]. Although strong up-

regulation of Sprr1a has been associated with abnormal cell

differentiation in uterine tissue from neonatal CD-1 mice treated

with diethylstilbestrol [41], effects in the developing prostate have

not previously been reported.

Also of interest in this 29-gene subset are the clear inverse U

effects on Perp and Gja1 expression. Perp is typically upregulated

during apoptosis [42] but is also important for promoting

desmosomal cell-cell adhesion [43], and loss of Perp is associated

with dysregulation of cell adhesion and promotion of tumor

development and progression [44]. Decreased expression of Gja1

(Cx43) is similarly consistent with loss or reduction of cell-cell

communication. Only one gene in this 29-gene subset, Enpp2,

showed a U-shaped response to increasing E2 concentrations;

Enpp2 codes for autoaxin, an ecto-enzyme responsible for

Table 1. Functional characterization by gene ontology (GO) terms of gene expression profiles in cells treated with 100 nM E2.

Number of genes z-scores

Category Gene Ontology Term up-regulated down- regulated up-regulated down- regulated

Biological process metabolic process 121 69 22.08* 21.43

biological regulation 100 40 2.70** 20.99

growth 17 3 5.11** 20.03

reproduction 11 9 0.94. 2.02*

reproductive process 5 6 0.42. 2.42*

rhythmic process 6 1 3.92** 0.23

Molecular function catalytic activity 135 76 22.3* 0.82

transporter activity 53 35 2.76** 1.42

doi:10.1371/journal.pone.0048311.t001

Figure 6. Comparison of expression of selected genes mea-
sured by microarray and by Q-PCR. Gene expression in cells
treated with 100 nM 17b-estradiol (grey bars) is compared to that in
untreated control cells (black bars). * Control vs. treated cells statistically
different, p,0.05. The qPCR data were previously published elsewhere
[19].
doi:10.1371/journal.pone.0048311.g006

Estrogen-Regulated Genes in Fetal Prostate Cells
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Table 2. Effects of 100 nM estradiol treatment on gene expression within specific regulatory pathways identified as being of
interest.

Pathway/Category Direction Ratio Gene Identifier Gene Name

Cell Communication Up 2.50 AV239646 Gjb2

z-score (up) = 3.32 Up 1.96 BE197934 Krt1-14

Up 2.62 AV330726 Gja1

Up 3.16 BC006894 Gja1

Up 3.81 M63801 Gja1

Up 4.48 L06421 Thbs2

Up 3.43 NM_011581 Thbs2

Up 1.83 BI455189 Col6a2

Androgen and estrogen metabolism Down 7.25 NM_023135 Sult1e1

z-score (up) = 2.4 Up 2.42 NM_007825 Cyp7b1

Up 8.12 NM_01378 Hsd17b9

TGF-beta signaling pathway Down 1.93 NM_010496 Idb2

z-score (down) = 2.19 Down 1.83 NM_008046 Fst

Down 1.75 NM_007554 Bmp4

Down 3.27 BM230984 Tgfb14i

Up 3.67 BB353211 Inhbb

Up 4.48 L06421 Thbs2

Up 3.43 NM_011581 Thbs2

Steroid hormone receptors Up 3.34 NM_007956 Esr1

Up 5.29 NM_008829 Pgr

Wnt signaling Down 2.22 NM_009519 Wnt11

Up 3.72 NM_009526 Wnt6

Up 1.89 W29605 Wnt7b

Up 5.85 NM_020265 Dkk2

Up 2.18 BB221995 Sfrp4

Cytokine-cytokine Receptor interaction Up 2.77 NM_019583 Il17rb

Up 2.21 NM_011330 Ccl11

Up 6.53 NM_021443 Ccl8

Up 3.67 BB353211 Inhbb

Up 3.85 AF000304 Il4ra

Up 2.91 NM_010557 Il4ra

Hedgehog signaling Down 2.22 NM_009519 Wnt11

Down 1.75 NM_007554 Bmp4

Up 3.72 NM_009526 Wnt6

Up 1.89 W29605 Wnt7b

Apoptosis Up 2.07 BF137345 Birc4

Down 2.85 NM_007603 Capn6

Down 2.23 AI747133 Capn6

Prostate cancer Up 3.40 BC010786 Creb3l3

Up 2.21 AJ252157 Foxo1

Up 2.60 NM_019739 Foxo1

Basal cell carcinoma Down 2.22 NM_009519 Wnt11

Down 1.75 NM_007554 Bmp4

Up 3.72 NM_009526 Wnt6

Up 1.89 W29605 Wnt7b

All genes listed are significantly altered at P,0.05. Where the z-score for the entire pathway was significant, the score is given below the pathway name. Where multiple
probes for the same gene are represented in these lists (indicated by italics), agreement was good between the probes.
doi:10.1371/journal.pone.0048311.t002
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producing lysophophatidic acid (LPA), known to be a mitogen for

both ovarian and prostate cancer cells, which stimulates cell

proliferation, survival and migration (reviewed in [45]). These

non-monotonically expressed genes reinforce the general conclu-

sion that pathways related to cell adhesion are influenced by

estrogen treatment, but also suggest a different effect of the highest

dose relative to the lower doses, with a progression toward

increased cell proliferation and migration at increasing dose.

The Wnt signaling pathway was influenced at all E2 doses

examined, but with an emphasis toward up-regulation of canonical

Wnt/b-catenin stabilization signaling at the high dose, and non-

canonical (PCP) signaling at lower doses. The high-dose effect may

be mediated through the known association of b-catenin with AR

and ER. Truica et al. have shown that b-catenin significantly

enhances androgen-stimulated transcriptional activation by the

AR, and that b-catenin also increases AR transcriptional

activation by E2 [46]. Although many Wnt genes are differentially

expressed in the prostate according to age [47], their role in

prostate development, and particularly their interactive and

temporal roles, is only starting to be described.

At the high dose of E2 we observed changes in genes related to

steroid hormone metabolism, and alterations in steroid hormone

signaling that would lead in turn to disruption of the normal

expression of other developmentally important genes. Of partic-

ular interest was the observed up-regulation of Cyp7b1, which

catalyzes the metabolism of the DHT metabolites 3a-Adiol and

3b-Adiol, and is thought to control cellular levels of both

androgens and estrogens [48]. We verified by quantitative PCR

(qPCR) that the up-regulation of Esr1 observed in these estrogen-

treated cells was dose-dependent and consistent with our prior

data ([14], data not shown); up-regulation of Ar was seen by qPCR

but did not reach statistical significance by microarray. Esr1 was

stimulated across the entire E2 dose range in this study, and thus is

a potential common mechanism for the initiation of consequent

Table 3. Genes whose expression was significantly (P#0.05) influenced by estradiol (E2) treatment at all doses tested.

Log2 fold expression relative to control

Low-dose cluster group Gene ID No E2 10 pM E2 100 pM E2 100 nM E2 Monotonic trend?

Inducible_moderate Sprr1a 0.00 0.98 2.23 5.57 Y

Inducible_moderate Angpt2 0.00 1.20 2.25 3.77 Y

Inducible_moderate Dkk2 0.00 0.67 2.21 2.55 Y

Inducible_moderate Pgr 0.00 0.98 2.22 2.40 Y

Inducible_low Fabp7 0.00 0.75 2.18 2.26 Y

Inducible_low Fbxo32 0.00 20.33 1.52 1.57 Y

Inducible_moderate Esr1 0.00 1.00 2.19 1.74 I

Inducible_moderate Rgs4 0.00 0.64 2.09 1.81 I

Inducible_moderate Thbs2 0.00 1.49 2.20 1.78 I

Inducible_moderate Btbd3 0.00 0.95 2.25 1.05 N

Inducible_moderate Gja1 0.00 0.66 2.21 1.51* N

Inducible_moderate Npy1r 0.00 1.14 2.16 1.49 N

Inducible_low Perp 0.00 0.21 2.06 0.71 N

Suppressible_low Sult1e1 0.00 0.20 21.81 22.86 Y

Suppressible_low Lcn2 0.00 0.49 21.63 22.44 Y

Suppressible_low Egfl6 0.00 20.20 22.04 21.93 Y

Suppressible_low Pdlim3 0.00 20.14 21.96 21.95 Y

Suppressible_low Cdkn1c 0.00 20.19 21.99 21.16 Y

Suppressible_low Capn6 0.00 20.43 21.93 21.51 I

Suppressible_low Igfbp2 0.00 0.15 21.87 20.96 I

Suppressible_low Wnt11 0.00 20.55 22.11 21.15 I

Suppressible_low Cyb561 0.00 0.57 21.52 20.93 I

Suppressible_low Gda 0.00 20.49 22.06 20.77 I

Suppressible_low Dpep1 0.00 0.97 21.19 20.67 I

Suppressible_low Zfp161 0.00 0.10 21.70 0.74 N

Suppressible_low Sfrp4 0.00 0.16 21.77 1.12 N

Suppressible_low Penk1 0.00 20.53 21.95 1.06 N

Suppressible_low Enpp2 0.00 0.90 21.17 1.85 N

U-curve Cd80 0.00 21.04 1.12 0.65 I

For each gene the log2 value of the fold change is given, and thus up-regulated and down-regulated genes are reflected in positive and negative numbers respectively.
Genes are sorted first according to the cluster groups identified for the low-dose treatments (see Methods), and then by whether the trend at the high dose (100 nM) is
consistent with the results seen at lower doses. Y = monotonic trend; gene expression at 100 nM E2 continues the trend at lower doses or has reached a plateau at that
point. N = trend is clearly not monotonic; gene expression at 100 nM E2 is in the reverse direction of the trend at lower doses. I = suggestion of non-monotonic trend;
gene expression at 100 nM shows slight reversal of trend at lower doses. *Value is average value for all probes for this gene (n = 5).
doi:10.1371/journal.pone.0048311.t003
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signaling events. Stimulation of Esr1 and Ar serve to amplify

estrogen and androgen signaling respectively, and in the intact

gland there would be further potential for signal amplification,

with local conversion of testosterone not only via Srd5a1 to the

more potent androgen DHT, but also via aromatization to E2.

It is important to note that the intracellular concentration of E2

within the urogenital sinus during development is still unknown.

The dose of E2 that reaches ER in male mouse UGS mesenchyme

cells would depend not only on E2 uptake from the blood but also

on local aromatization of testosterone to E2. Because of this issue,

we administered E2 over a wide dose range, but also ensured that

the opportunity for aromatization was controlled by the use of

DHT rather than testosterone in the culture medium. Total

testosterone circulates in the range of 5–8 nM in the male rat and

mouse fetus during prostate differentiation [11,32]. Because there

is no high-affinity testosterone binding protein in the blood at this

time, and testosterone is only weakly bound to albumin, the result

is that the percentage of total testosterone in blood that is bioactive

is high, particularly compared to E2, which binds to the high-

affinity plasma protein alphafetoprotein. Serum testosterone thus

provides a substantial pool from which intracellular E2 can be

formed by aromatization in fetal prostate mesenchyme cells

[32,49]. Arase and colleagues [50] have measured E2 concentra-

tions in fetal male mouse UGS tissue at GD17 and postnatal day

(PD) 1, which approximated 10 and 25 pg/g, respectively. These

concentrations are consistent with the low doses of E2 that we

administered in this study, although again we do not know how

much of this E2 reaches ER (the actual dose at target). Future

work should address the dynamics of estrogen concentration and

receptor activation both in vitro and in vivo.

The up-regulation of Pgr by all doses of E2 administered here to

UGS mesenchyme cells is in general agreement with Risbridger et

al., who reported up-regulation of progesterone receptors (PR) in

the adult mouse prostate after estrogen treatment [51], and with

data from Nishino et al. that showed enhancement of progester-

one’s proliferative effects on the adult rat prostate after co-

treatment with E2 or DHT [52]. The presence of PR may be more

relevant during fetal life, when progesterone levels are higher, than

in adulthood when progesterone levels are low. The issue of fetal

responsiveness to progestins is complex in that there is evidence

that progestins can have anti-androgenic influences on sexual

differentiation, through inhibition of 5a-reductase [53,54]. Up-

regulation of Pgr is thus a potential mechanism for disruptive

effects of estrogens on male accessory reproductive organ

development, but its impact will require further study.

Neonatal estrogen treatment is known to affect the expression of

several genes critical to prostate development. Notable examples

are Hoxb13, Nkx3.1, Shh, Fgf10 and Bmp4 [55]. Some of the

genes that responded to E2 treatment in our cells agree with the

findings of others (Hoxb13, Bmp4), but several of the ‘‘candidate’’

genes were not affected at the doses we examined. There may be

several reasons for this, but two are critical. First, we deliberately

cultured only the mesenchyme cells, to specifically examine effects

of E2 on gene expression in the cells that initiate early prostate

differentiation. Without the two-way communication that occurs

between epithelial and mesenchymal cells in the developing

prostate the full range of gene expression will not be seen

[1,56,57]. For example, Nkx3.1 is expressed only in epithelial cells

in regions of ductal growth, although its expression is dependent

on the presence of UGS mesenchyme [58]. Similarly, Ptc and Gli,

components of the Shh signaling pathway that are important for

directing ductal growth, are expressed in the mesenchyme but are

regulated by Shh signaling from the epithelium [59]. Additionally,

in studies performed in vivo, other factors provided via blood

circulation (known or unknown), as well as shifts in hormone levels

that occur during late fetal life, parturition and early postnatal life

[32,59], will influence gene expression. Consequently, studies

performed in whole tissues of intact animals are bound to yield

different and more complex results.

Developmental estrogen exposure has the potential to acutely

stimulate abnormal growth and induction of hyperplasia in the

developing prostate [12], and this clearly establishes the potential

for abnormal function in later life and a predisposition toward

adult prostate disease [28]. The growth of fetal prostate epithelial

cells and duct formation are driven by signals from the UGS

mesenchyme [9], and our results suggest that the developmental

effects of estrogens or xenoestrogens on UGS differentiation may

be mediated initially by enhanced mesenchymal cell responsive-

ness to sex steroid hormones through up-regulation of steroid

hormone receptor concentrations, with subsequent effects on other

genes that differed based on the dose of E2. The differing patterns

of gene expression at low and high E2 concentrations and the

presence of non-monotonic responses of some genes to the wide

(10,000-fold) range of E2 concentrations studied are consistent

with non-monotonic dose effects on prostate development in vivo

[11,12,13].
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