18 research outputs found

    Identification by Virtual Screening and In Vitro Testing of Human DOPA Decarboxylase Inhibitors

    Get PDF
    Dopa decarboxylase (DDC), a pyridoxal 5′-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the “in vitro” activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with Ki values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with Ki values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a Ki value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery

    Virtual Screening for the identification of inhibitors of PLP-dependent enzymes

    No full text
    Dopa decarboxylase (DDC), a pyridoxal 5'-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i) values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i) values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i) value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery

    In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed

    No full text
    Serine hydroxymethyltransferase (SHMT), a ubiquitous representative of the family of fold-type I, pyridoxal 5'-phosphate (PLP) dependent enzymes, catalyzes the reversible conversion of tetrahydrofolate (H(4)PteGlu) and serine to 5,10-CH(2)-H(4)PteGlu and glycine. Together with thymidylate synthase (TS) and dihydrofolate reductase (DHFR), SHMT participates to the thymidylate (dTMP) biosynthetic process. Elevated SHMT activity has been coupled to the increased demand for DNA synthesis in tumour cells. However, SHMT is the only enzyme of the thymidylate cycle yet to be targeted by chemotherapeutics. In this study, the interaction mode of SHMT with pemetrexed, an antifolate drug inhibiting several enzymes involved in folate-dependent biosynthetic pathways, was assessed. The mechanism of SHMT inhibition by pemetrexed was investigated in vitro using the human recombinant protein. The results of this study showed that pemetrexed competitively inhibits SHMT with respect to HeteGlu with a measured K(i) of 19.1 +/- 3.1 mu M; this value was consistent with a K(d) of 16.9 +/- 5.0 mu M, measured by isothermal titration calorimetry. The binding mode of pemetrexed to SHMT was further investigated by molecular docking. The calculated interaction energy of pemetrexed in the active site of SHMT was -7.48 kcal/mol, and the corresponding predicted binding affinity was 36.3 mu M, in good agreement with K(d) and K(i) values determined experimentally. The results thus provide insights into the mechanism of action of this antifolate drug and constitute the basis for the rational design of more selective inhibitors of SHMT. (C) 2011 Elsevier Masson SAS. All rights reserved

    Screening and in vitro testing of antifolate inhibitors of human cytosolic serine hydroxymethyltransferase

    No full text
    Metabolic reprogramming of tumor cells toward serine catabolism is now recognized as a hallmark of cancer. Serine hydroxymethyltransferase (SHMT), the enzyme providing one-carbon units by converting serine and tetrahydrofolate (H4 PteGlu) to glycine and 5,10-CH2 -H4 PteGlu, therefore represents a target of interest in developing new chemotherapeutic drugs. In this study, 13 folate analogues under clinical evaluation or in therapeutic use were in silico screened against SHMT, ultimately identifying four antifolate agents worthy of closer evaluation. The interaction mode of SHMT with these four antifolate drugs (lometrexol, nolatrexed, raltitrexed, and methotrexate) was assessed. The mechanism of SHMT inhibition by the selected antifolate agents was investigated in vitro using the human cytosolic isozyme. The results of this study showed that lometrexol competitively inhibits SHMT with inhibition constant (Ki ) values in the low micromolar. The binding mode of lometrexol to SHMT was further investigated by molecular docking. These results thus provide insights into the mechanism of action of antifolate drugs and constitute the basis for the rational design of novel and more potent inhibitors of SHMT

    Visible CD spectral changes induced by compound 37 on human DDC.

    No full text
    <p>CD spectra of human holoDDC (<b>—</b>) and in the presence of the compound <b>37</b> at the indicated concentration in 0.1 M potassium phosphate buffer, pH 7.4. Inset: ellipticity change of DDC plus compound <b>37</b> at 420 nm and 335 nm as a function of inhibitor concentration. The enzyme concentration was 6 µM.</p

    Predicted binding mode of compounds selected after the first VS.

    No full text
    <p>The figure shows the binding mode of (A) compound <b>1</b>, (B) compound <b>2</b>, (C) compound <b>5</b>, and (D) compound <b>11</b>. Residues and water molecules interacting with the inhibitors are also shown. Figure was rendered with Pymol (<a href="http://www.pymol.org/" target="_blank">http://www.pymol.org/</a>).</p

    Lead-like (compounds 1, 2, 4, 6, 8, 10, 14, 15) and drug-like (compounds 3, 5, 7, 9, 11, 12, 13) molecules selected by the VS.

    No full text
    <p>The table summarizes, for each compound, the ZINC-code, the Ambinter-code, the molecular weight, the number of matched features of the final PH, the experimental K<sub>i</sub> and/or K<sub>i′</sub> values, the BE, and the inhibition profile. n.d., not determined.</p
    corecore