121 research outputs found

    Nanomaterials to avoid and destroy protein aggregates

    Get PDF
    Aggregation of proteins is involved in many disorders. Besides amyloid fibrils, which mostly form in the brain, other kind of protein aggregates can lead, for example, to clots in the blood or floaters in the vitreous of the eye. This review aims to overview on how nanomaterials could be employed to avoid and destroy most diverse protein aggregates. Indeed, thanks to their recognized versatility, (stimuli-responsive) nanomaterials may offer attractive features against harmful protein aggregates. However, despite the many conceptually interesting strategies it appears that most important information on both the in vivo efficacy and safety of nanotechnology based prevention or destruction of protein aggregates, which is highly needed to pave the way to clinically relevant therapies, remains missing

    Opposing Activities of Notch and Wnt Signaling Regulate Intestinal Stem Cells and Gut Homeostasis

    Get PDF
    SummaryProper organ homeostasis requires tight control of adult stem cells and differentiation through the integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a derepression of the Wnt signaling pathway, leading to misexpression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology

    Atoh1 \u3csup\u3e+\u3c/sup\u3e secretory progenitors possess renewal capacity independent of Lgr5 \u3csup\u3e+\u3c/sup\u3e cells during colonic regeneration

    Get PDF
    During homeostasis, the colonic epithelium is replenished every 3–5 days by rapidly cycling Lgr5 + stem cells. However, various insults can lead to depletion of Lgr5 + stem cells, and colonic epithelium can be regenerated from Lgr5-negative cells. While studies in the small intestine have addressed the lineage identity of the Lgr5-negative regenerative cell population, in the colon this question has remained unanswered. Here, we set out to identify which cell(s) contribute to colonic regeneration by performing genetic fate-mapping studies of progenitor populations in mice. First, using keratin-19 (Krt19) to mark a heterogeneous population of cells, we found that Lgr5-negative cells can regenerate colonic crypts and give rise to Lgr5 + stem cells. Notch1 + absorptive progenitor cells did not contribute to epithelial repair after injury, whereas Atoh1 + secretory progenitors did contribute to this process. Additionally, while colonic Atoh1 + cells contributed minimally to other lineages during homeostasis, they displayed plasticity and contributed to epithelial repair during injury, independent of Lgr5 + cells. Our findings suggest that promotion of secretory progenitor plasticity could enable gut healing in colitis

    Oncogenic ERBB3 Mutations in Human Cancers

    Get PDF
    SummaryThe human epidermal growth factor receptor (HER) family of tyrosine kinases is deregulated in multiple cancers either through amplification, overexpression, or mutation. ERBB3/HER3, the only member with an impaired kinase domain, although amplified or overexpressed in some cancers, has not been reported to carry oncogenic mutations. Here, we report the identification of ERBB3 somatic mutations in ∼11% of colon and gastric cancers. We found that the ERBB3 mutants transformed colonic and breast epithelial cells in a ligand-independent manner. However, the mutant ERBB3 oncogenic activity was dependent on kinase-active ERBB2. Furthermore, we found that anti-ERBB antibodies and small molecule inhibitors effectively blocked mutant ERBB3-mediated oncogenic signaling and disease progression in vivo

    TMEFF2 Is a PDGF-AA Binding Protein with Methylation-Associated Gene Silencing in Multiple Cancer Types Including Glioma

    Get PDF
    BACKGROUND: TMEFF2 is a protein containing a single EGF-like domain and two follistatin-like modules. The biological function of TMEFF2 remains unclear with conflicting reports suggesting both a positive and a negative association between TMEFF2 expression and human cancers. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that the extracellular domain of TMEFF2 interacts with PDGF-AA. This interaction requires the amino terminal region of the extracellular domain containing the follistatin modules and cannot be mediated by the EGF-like domain alone. Furthermore, the extracellular domain of TMEFF2 interferes with PDGF-AA-stimulated fibroblast proliferation in a dose-dependent manner. TMEFF2 expression is downregulated in human brain cancers and is negatively correlated with PDGF-AA expression. Suppressed expression of TMEFF2 is associated with its hypermethylation in several human tumor types, including glioblastoma and cancers of ovarian, rectal, colon and lung origins. Analysis of glioma subtypes indicates that TMEFF2 hypermethylation and decreased expression are associated with a subset of non-Proneural gliomas that do not display CpG island methylator phentoype. CONCLUSIONS/SIGNIFICANCE: These data provide the first evidence that TMEFF2 can function to regulate PDGF signaling and that it is hypermethylated and downregulated in glioma and several other cancers, thereby suggesting an important role for this protein in the etiology of human cancers
    • …
    corecore