218 research outputs found
Affine term structure models : a time-changed approach with perfect fit to market curves
We address the so-called calibration problem which consists of fitting in a
tractable way a given model to a specified term structure like, e.g., yield or
default probability curves. Time-homogeneous jump-diffusions like Vasicek or
Cox-Ingersoll-Ross (possibly coupled with compounded Poisson jumps, JCIR), are
tractable processes but have limited flexibility; they fail to replicate actual
market curves. The deterministic shift extension of the latter (Hull-White or
JCIR++) is a simple but yet efficient solution that is widely used by both
academics and practitioners. However, the shift approach is often not
appropriate when positivity is required, which is a common constraint when
dealing with credit spreads or default intensities. In this paper, we tackle
this problem by adopting a time change approach. On the top of providing an
elegant solution to the calibration problem under positivity constraint, our
model features additional interesting properties in terms of implied
volatilities. It is compared to the shift extension on various credit risk
applications such as credit default swap, credit default swaption and credit
valuation adjustment under wrong-way risk. The time change approach is able to
generate much larger volatility and covariance effects under the positivity
constraint. Our model offers an appealing alternative to the shift in such
cases.Comment: 44 pages, figures and table
Post Genome-Wide Association Studies of Novel Genes Associated with Type 2 Diabetes Show Gene-Gene Interaction and High Predictive Value
Recently, several Genome Wide Association (GWA) studies in populations of European descent have identified and validated novel single nucleotide polymorphisms (SNPs), highly associated with type 2 diabetes (T2D). Our aims were to validate these markers in other European and non-European populations, then to assess their combined effect in a large French study comparing T2D and normal glucose tolerant (NGT) individuals. rs7903146 SNP, were combined (8.68-fold for the 14% of French individuals carrying 18 to 30 risk alleles with an allelic OR of 1.24). With an area under the ROC curve of 0.86, only 15 novel loci were necessary to discriminate French individuals susceptible to develop T2D. strongly associate with T2D in French individuals, and mostly in populations of Central European descent but not in Moroccan subjects. Genes expressed in the pancreas interact together and their combined effect dramatically increases the risk for T2D, opening avenues for the development of genetic prediction tests
Distinct Expression Profiles and Different Functions of Odorant Binding Proteins in Nilaparvata lugens StΓ₯l
Background: Odorant binding proteins (OBPs) play important roles in insect olfaction. The brown planthopper (BPH), Nilaparvata lugens StaΛl (Delphacidae, Auchenorrhyncha, Hemiptera) is one of the most important rice pests. Its monophagy (only feeding on rice), wing form (long and short wing) variation, and annual long distance migration (seeking for rice plants of high nutrition) imply that the olfaction would play a central role in BPH behavior. However, the olfaction related proteins have not been characterized in this insect. Methodology/Principal Findings: Full length cDNA of three OBPs were obtained and distinct expression profiles were revealed regarding to tissue, developmental stage, wing form and gender for the first time for the species. The results provide important clues in functional differentiation of these genes. Binding assays with 41 compounds demonstrated that NlugOBP3 had markedly higher binding ability and wider binding spectrum than the other two OBPs. Terpenes and Ketones displayed higher binding while Alkanes showed no binding to the three OBPs. Focused on NlugOBP3, RNA interference experiments showed that NlugOBP3 not only involved in nymph olfaction on rice seedlings, but also had non-olfactory functions, as it was closely related to nymph survival. Conclusions: NlugOBP3 plays important roles in both olfaction and survival of BPH. It may serve as a potential target fo
Odour Maps in the Brain of Butterflies with Divergent Host-Plant Preferences
Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca2+ activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants
Diversity in Protein Glycosylation among Insect Species
status: publishe
Diagnostic performance of FibroTest, SteatoTest and ActiTest in patients with NAFLD using the SAF score as histological reference
BACKGROUND: Blood tests of liver injury are less well validated in nonβalcoholic fatty liver disease (NAFLD) than in patients with chronic viral hepatitis. AIMS: To improve the validation of three blood tests used in NAFLD patients, FibroTest for fibrosis staging, SteatoTest for steatosis grading and ActiTest for inflammation activity grading. METHODS: We preβincluded new NAFLD patients with biopsy and blood tests from a singleβcentre cohort (FibroFrance) and from the multicentre FLIP consortium. Contemporaneous biopsies were blindly assessed using the new steatosis, activity and fibrosis (SAF) score, which provides a reliable and reproducible diagnosis and grading/staging of the three elementary features of NAFLD (steatosis, inflammatory activity) and fibrosis with reduced interobserver variability. We used nonbinaryβROC (NonBinAUROC) as the main endpoint to prevent spectrum effect and multiple testing. RESULTS: A total of 600 patients with reliable tests and biopsies were included. The mean NonBinAUROCs (95% CI) of tests were all significant (P < 0.0001): 0.878 (0.864β0.892) for FibroTest and fibrosis stages, 0.846 (0.830β0.862) for ActiTest and activity grades, and 0.822 (0.804β0.840) for SteatoTest and steatosis grades. FibroTest had a higher NonBinAUROC than BARD (0.836; 0.820β0.852; P = 0.0001), FIB4 (0.845; 0.829β0.861; P = 0.007) but not significantly different than the NAFLD score (0.866; 0.850β0.882; P = 0.26). FibroTest had a significant difference in median values between adjacent stage F2 and stage F1 contrarily to BARD, FIB4 and NAFLD scores (Bonferroni test P < 0.05). CONCLUSIONS: In patients with NAFLD, SteatoTest, ActiTest and FibroTest are nonβinvasive tests that offer an alternative to biopsy, and they correlate with the simple grading/staging of the SAF scoring system across the three elementary features of NAFLD: steatosis, inflammatory activity and fibrosis
Disordered Microbial Communities in the Upper Respiratory Tract of Cigarette Smokers
Cigarette smokers have an increased risk of infectious diseases involving the respiratory tract. Some effects of smoking on specific respiratory tract bacteria have been described, but the consequences for global airway microbial community composition have not been determined. Here, we used culture-independent high-density sequencing to analyze the microbiota from the right and left nasopharynx and oropharynx of 29 smoking and 33 nonsmoking healthy asymptomatic adults to assess microbial composition and effects of cigarette smoking. Bacterial communities were profiled using 454 pyrosequencing of 16S sequence tags (803,391 total reads), aligned to 16S rRNA databases, and communities compared using the UniFrac distance metric. A Random Forest machine-learning algorithm was used to predict smoking status and identify taxa that best distinguished between smokers and nonsmokers. Community composition was primarily determined by airway site, with individuals exhibiting minimal side-of-body or temporal variation. Within airway habitats, microbiota from smokers were significantly more diverse than nonsmokers and clustered separately. The distributions of several genera were systematically altered by smoking in both the oro- and nasopharynx, and there was an enrichment of anaerobic lineages associated with periodontal disease in the oropharynx. These results indicate that distinct regions of the human upper respiratory tract contain characteristic microbial communities that exhibit disordered patterns in cigarette smokers, both in individual components and global structure, which may contribute to the prevalence of respiratory tract complications in this population
Topological and Functional Characterization of an Insect Gustatory Receptor
Insect gustatory receptors are predicted to have a seven-transmembrane structure and are distantly related to insect olfactory receptors, which have an inverted topology compared with G-protein coupled receptors, including mammalian olfactory receptors. In contrast, the topology of insect gustatory receptors remains unknown. Except for a few examples from Drosophila, the specificity of individual insect gustatory receptors is also unknown. In this study, the total number of identified gustatory receptors in Bombyx mori was expanded from 65 to 69. BmGr8, a silkmoth gustatory receptor from the sugar receptor subfamily, was expressed in insect cells. Membrane topology studies on BmGr8 indicate that, like insect olfactory receptors, it has an inverted topology relative to G protein-coupled receptors. An orphan GR from the bitter receptor family, BmGr53, yielded similar results. We infer, from the finding that two distantly related BmGrs have an intracellular N-terminus and an odd number of transmembrane spans, that this is likely to be a general topology for all insect gustatory receptors. We also show that BmGr8 functions independently in Sf9 cells and responds in a concentration-dependent manner to the polyalcohols myo-inositol and epi-inositol but not to a range of mono- and di-saccharides. BmGr8 is the first chemoreceptor shown to respond specifically to inositol, an important or essential nutrient for some Lepidoptera. The selectivity of BmGr8 responses is consistent with the known responses of one of the gustatory receptor neurons in the lateral styloconic sensilla of B. mori, which responds to myo-inositol and epi-inositol but not to allo-inositol
- β¦