9 research outputs found

    Saccharomyces boulardii Strain CNCM I-745 Modifies the Mononuclear Phagocytes Response in the Small Intestine of Mice Following Salmonella Typhimurium Infection

    Get PDF
    Intestinal mononuclear phagocytes (MPs) comprise dendritic cells (DCs) and macrophages (Mφs) that play different roles in response to Salmonella infection. After phagocytosis, DCs expressing CD103 transport Salmonella from the intestinal tract to the mesenteric lymph nodes (MLN) and induce adaptive immune responses whereas resident Mφs expressing CX3CR1 capture bacteria in the lumen and reside in the lamina propria (LP) where they induce a local immune response. CX3CR1+ Mφs are generated from Ly6Chi monocytes that enter the colonic mucosa and differentiate locally. We previously demonstrated that the probiotic yeast Saccharomyces boulardii CNCM I-745 (S.b) prevents infection by Salmonella enterica serovar Typhimurium (ST), decreases ST translocation to the peripheral organs and modifies the pro-and anti-inflammatory cytokine profiles in the gut. In the present study, we investigated the effect of S.b on the migratory CD103+ DCs and the resident CX3CR1+ Mφs. MPs were isolated from the LP of streptomycin-treated mice infected by ST with or without S.b treatment before or during the infection. In S.b-pretreated mice, we observed a decrease of the CD103+ DCs in the LP that was associated with the drop of ST recovery from MLN. Interestingly, S.b induced an infiltration of LP by classical Ly6Chi monocytes, and S.b modified the monocyte-Mφ maturation process in ST-infected mice. Our results showed that S.b treatment induced the expansion of Ly6Chi monocytes in the blood as well as in the bone marrow (BM) of mice, thus contributing to the Mφ replenishment in LP from blood monocytes. In vitro experiments conducted on BM cells confirmed that S.b induced the expansion of CX3CR1+ Mφs and concomitantly ST phagocytosis. Altogether, these data demonstrate that Saccharomyces boulardii CNCM I-745 modulates the innate immune response. Although here, we cannot explicitly delineate direct effects on ST from innate immunity, S. b-amplified innate immunity correlated with partial protection from ST infection. This study shows that S.b can induce the expansion of classical monocytes that are precursors of resident Mφs in the LP

    CD99 isoforms regulate CD1a expression in human monocyte-derived DCs through ATF-2/CREB-1 phosphorylation

    No full text
    International audienceCD1a expression is considered one of the major characteristics qualifying in vitro human dendritic cells (DCs) during their generation process. Here, we report that CD1A transcription is regulated by a mechanism involving the long and short isoforms of CD99. Using a lentiviral construct encoding for a CD99 short hairpin RNA, we were able to inhibit CD99 expression in human primary DCs. In such cells, CD1a membrane expression increased and CD1A transcripts were much higher in abundance compared to cells expressing CD99 long form (CD99LF). We also show that CD1A transcription is accompanied by a switch in expression from CD99LF to expression at comparable levels of both CD99 isoforms during immature DCs generation in vitro. We demonstrate that CD99LF maintains a lower level of CD1A transcription by up-regulating the phosphorylated form of the ATF-2 transcription factor and that CD99 short form (SF) is required to counteract this regulatory mechanism. Elucidation of the molecular mechanisms related to CD99 alternative splicing will be very helpful to better understand the transcriptional regulatory mechanism of CD1a molecules during DCs differentiation and its involvement in the immune response

    Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens.

    No full text
    Hedgehog (Hh) proteins are considered diffusible morphogens that can be membrane anchored, playing an essential role during development. Here we show that Hh morphogens are associated with microvesicles (MVs) shed from the plasma membrane of apoptotic/stimulated T cells. Hh+ MVs induced differentiation of human K562 pluripotent erythroleukemic cells toward megakaryocytic lineage, as testified to by the expression of alpha(IIb)beta3 integrin and CD42b and changes in the cell cycle. Blocking Hh pathway with either cyclopamine, neutralizing antibodies, or inhibitors of the protein kinase A pathway resulted in the inhibition of these effects. Activation of Hh signaling by SAG, a synthetic agonist, mimicked effects of Hh+ MVs on K562 cells. Human Hh+ MVs, circulating in vivo or derived from apoptotic/stimulated lymphocytes from healthy and diabetic individuals, elicited K562 cell differentiation, also inhibited by cyclopamine. In addition, Hh+ MV-treated primary human CD34+ cells presented an increase of CD41+ CD42- and CD41+ CD42+ megakaryocytic populations with an increase of corresponding polyploidy, both being reduced by blockers of the Hh pathway. Because virtually all cell types undergo plasma membrane remodeling when stimulated, derived MVs can therefore be considered true vectors in the transfer of morphogen-borne biologic information to remote responsive cells, and thereby contribute to the maintenance of homeostasis

    Targeting DDR1 and DDR2 overcomes matrix-mediated melanoma cell adaptation to BRAF-targeted therapy

    No full text
    Resistance to BRAF and MEK inhibitors in BRAF V600E mutant melanomas remains a major obstacle that limits patient benefit. Microenvironment components including the extracellular matrix (ECM) can support tumor cell adaptation and tolerance to targeted therapies, however the underlying mechanisms remain poorly understood. Here, we investigated the process of matrix-mediated drug resistance (MM-DR) in response to BRAF inhibition in melanoma. We demonstrate that physical and structural cues from fibroblast-derived ECM abrogate anti-proliferative responses to BRAF/MEK inhibition. MM-DR is mediated by the drug-induced clustering of DDR1 and DDR2, two tyrosine kinase collagen receptors. Genetic depletion and pharmacological inhibition of DDR1 and DDR2 overcome ECM-mediated resistance to BRAF inhibition. In melanoma xenografts, targeting DDRs by Imatinib enhances BRAF inhibitor efficacy, counteracts drug-induced collagen remodeling and delays tumor relapse. Mechanistically, DDR-mediated MM-DR fosters a targetable pro-survival NIK/IKKα/NF-ÎșB2 pathway. Our study reveals a novel role of collagen-rich matrix and DDRs in tumor cell adaptation and therapy resistance, thus providing important insights into environment-mediated drug resistance and a pre-clinical rationale for targeting DDR1/2 signaling in combination with BRAF-targeted therapy in melanoma

    A Feed-Forward Mechanosignaling Loop Confers Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutant Melanoma

    No full text
    Aberrant extracellular matrix (ECM) deposition and stiffening is a physical hallmark of several solid cancers and is associated with therapy failure. BRAF-mutant melanomas treated with BRAF and MEK inhibitors almost invariably develop resistance that is frequently associated with transcriptional reprogramming and a de-differentiated cell state. Melanoma cells secrete their own ECM proteins, an event that is promoted by oncogenic BRAF inhibition. Yet, the contribution of cancer cell-derived ECM and tumor mechanics to drug adaptation and therapy resistance remains poorly understood. Here, we show that melanoma cells can adapt to targeted therapies through a mechanosignaling loop involving the autocrine remodeling of a drug-protective ECM. Analyses revealed that therapy-resistant cells associated with a mesenchymal dedifferentiated state displayed elevated responsiveness to collagen stiffening and force-mediated ECM remodeling through activation of actin-dependent mechanosensors Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF). Short-term inhibition of MAPK pathway also induced mechanosignaling associated with deposition and remodeling of an aligned fibrillar matrix. This provided a favored ECM reorganization that promoted tolerance to BRAF inhibition in a YAP- and MRTF-dependent manner. Matrix remodeling and tumor stiffening were also observed in vivo upon exposure of BRAF-mutant melanoma cell lines or patient-derived xenograft models to MAPK pathway inhibition. Importantly, pharmacologic targeting of YAP reversed treatment-induced excessive collagen deposition, leading to enhancement of BRAF inhibitor efficacy. We conclude that MAPK pathway targeting therapies mechanically reprogram melanoma cells to confer a drug-protective matrix environment. Preventing melanoma cell mechanical reprogramming might be a promising therapeutic strategy for patients on targeted therapies. SIGNIFICANCE: These findings reveal a biomechanical adaptation of melanoma cells to oncogenic BRAF pathway inhibition, which fuels a YAP/MRTF-dependent feed-forward loop associated with tumor stiffening, mechanosensing, and therapy resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/1927/F1.large.jpg.status: publishe

    Blockade of the pro‐fibrotic reaction mediated by the miR‐143/‐145 cluster enhances the responses to targeted therapy in melanoma

    No full text
    International audienceLineage dedifferentiation toward a mesenchymal-like state displaying myofibroblast and fibrotic features is a common mechanism of adaptive and acquired resistance to targeted therapy in melanoma. Here, we show that the anti-fibrotic drug nintedanib is active to normalize the fibrous ECM network, enhance the efficacy of MAPK-targeted therapy, and delay tumor relapse in a preclinical model of melanoma. Acquisition of this resistant phenotype and its reversion by nintedanib pointed to miR-143/-145 pro-fibrotic cluster as a driver of this mesenchymal-like phenotype. Upregulation of the miR-143/-145 cluster under BRAFi/MAPKi therapy was observed in melanoma cells in vitro and in vivo and was associated with an invasive/undifferentiated profile. The 2 mature miRNAs generated from this cluster, miR-143-3p and miR-145-5p, collaborated to mediate transition toward a drug-resistant undifferentiated mesenchymal-like state by targeting Fascin actin-bundling protein 1 (FSCN1), modulating the dynamic crosstalk between the actin cytoskeleton and the ECM through the regulation of focal adhesion dynamics and mechanotransduction pathways. Our study brings insights into a novel miRNA-mediated regulatory network that contributes to non-genetic adaptive drug resistance and provides proof of principle that preventing MAPKi-induced pro-fibrotic stromal response is a viable therapeutic opportunity for patients on targeted therapy
    corecore