38 research outputs found

    Current singularities at Quasi-separatrix layers and three-dimensional magnetic nulls

    Get PDF
    The open problem of how singular current structures form in line-tied, three-dimensional magnetic fields is addressed. A Lagrangian magneto-frictional relaxation method is employed to model the field evolution toward the final near-singular state. Our starting point is an exact force-free solution of the governing magnetohydrodynamic equations that is sufficiently general to allow for topological features like magnetic nulls to be inside or outside the computational domain, depending on a simple set of parameters. Quasi-separatrix layers (QSLs) are present in these structures and, together with the magnetic nulls, they significantly influence the accumulation of current. It is shown that perturbations affecting the lateral boundaries of the configuration lead not only to collapse around the magnetic null but also to significant QSL currents. Our results show that once a magnetic null is present, the developing currents are always attracted to that specific location and show a much stronger scaling with resolution than the currents that form along the QSL. In particular, the null-point scalings can be consistent with models of "fast" reconnection. The QSL currents also appear to be unbounded but give rise to weaker singularities, independent of the perturbation amplitude

    Anisotropic diffusion of galactic cosmic ray protons and their steady-state azimuthal distribution

    Full text link
    Galactic transport models for cosmic rays involve the diffusive motion of these particles in the interstellar medium. Due to the large-scale structured galactic magnetic field this diffusion is anisotropic with respect to the local field direction. We included this transport effect along with continuous loss processes in a quantitative model of galactic propagation for cosmic ray protons which is based on stochastic differential equations. We calculated energy spectra at different positions along the Sun's galactic orbit and compared them to the isotropic diffusion case. The results show that a larger amplitude of variation as well as different spectral shapes are obtained in the introduced anisotropic diffusion scenario and emphasize the need for accurate galactic magnetic field models.Comment: 7 pages, 5 figures, accepted for publication in A&

    Parameter estimation of superdiffusive motion of energetic particles upstream of heliospheric shocks

    Full text link
    In-situ spacecraft observations recently suggested that the transport of energetic particles accelerated at heliospheric shocks can be anomalous, i.e. the mean square displacement can grow non-linearly in time. In particular, a new analysis technique has permitted the study of particle transport properties from energetic particle time profiles upstream of interplanetary shocks. Indeed, the time/spatial power laws of the differential intensity upstream of several shocks are indicative of superdiffusion. A complete determination of the key parameters of superdiffusive transport comprises the power-law index, the superdiffusion coefficient, the related transition scale at which the energetic particle profiles turn to decay as power laws, and the energy spectral index of the shock accelerated particles. Assuming large-scale spatial homogeneity of the background plasma, the power-law behaviour can been derived from both a (microscopic) propagator formalism and a (macroscopic) fractional transport equation. We compare the two approaches and find a relation between the diffusion coefficients used in the two formalisms. Based on the assumption of superdiffusive transport, we quantitatively derive these parameters by studying energetic particle profiles observed by the Ulysses and Voyager 2 spacecraft upstream of shocks in the heliosphere, for which a superdiffusive particle transport has previously been observed. Further, we have jointly studied the electron energy spectra, comparing the values of the spectral indices observed with those predicted by the standard diffusive shock acceleration theory and by a model based on superdiffusive transport. For a number of interplanetary shocks and for the solar wind termination shock, for the first time we obtain the anomalous diffusion constants and the scale at which the probability of particle free paths changes to a power-law...Comment: 5 Figure

    Numerical Simulation of Current Sheet Formation in a Quasi-Separatrix Layer using Adaptive Mesh Refinement

    Get PDF
    The formation of a thin current sheet in a magnetic quasi-separatrix layer (QSL) is investigated by means of numerical simulation using a simplified ideal, low-β\beta, MHD model. The initial configuration and driving boundary conditions are relevant to phenomena observed in the solar corona and were studied earlier by Aulanier et al., A&A 444, 961 (2005). In extension to that work, we use the technique of adaptive mesh refinement (AMR) to significantly enhance the local spatial resolution of the current sheet during its formation, which enables us to follow the evolution into a later stage. Our simulations are in good agreement with the results of Aulanier et al. up to the calculated time in that work. In a later phase, we observe a basically unarrested collapse of the sheet to length scales that are more than one order of magnitude smaller than those reported earlier. The current density attains correspondingly larger maximum values within the sheet. During this thinning process, which is finally limited by lack of resolution even in the AMR studies, the current sheet moves upward, following a global expansion of the magnetic structure during the quasi-static evolution. The sheet is locally one-dimensional and the plasma flow in its vicinity, when transformed into a co-moving frame, qualitatively resembles a stagnation point flow. In conclusion, our simulations support the idea that extremely high current densities are generated in the vicinities of QSLs as a response to external perturbations, with no sign of saturation.Comment: 6 Figure

    First results of the SA Agulhas II mobile mini-neutron monitor: Instrumental characterization and environmental sensitivity

    Get PDF
    We present the first results of a new redesigned version of the mini-neutron monitor installed on the South African Research vessel, the SA Agulhas II. Measurements taken from the 2019/2020 relief voyages are presented. We show that the instrument is very sensitive to temperature variations when the ambient temperature is below 3oC. This is believed to be an instrumental effect. Additionally, we show the presence of high-frequency interference in the calculated waiting time distributions when the vessel reaches polar latitudes. We show that these periodic variations are only present in the intensity of secondary atmospheric particles and most likely related to the operation of the vessel’s ice radar. We are currently looking at moving the instrument to a more suitable location on board the SA Agulhas II where we will hopefully be able to operate the instrument in a continuous fashion for several years to come
    corecore