20 research outputs found
A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa
AbstractThe mycobacterial ubiquitin-like protein Pup is coupled to proteins, thereby rendering them as substrates for proteasome-mediated degradation. The Pup-tagged proteins are recruited by the proteasomal ATPase Mpa (also called ARC). Using a combination of biochemical and NMR methods, we characterize the structural determinants of Pup and its interaction with Mpa, demonstrating that Pup adopts a range of extended conformations with a short helical stretch in its C-terminal portion. We show that the N-terminal coiled-coil domain of Mpa makes extensive contacts along the central region of Pup leaving its N-terminus unconstrained and available for other functional interactions.Structured summaryMINT-7262427: pup (uniprotkb:B6DAC1) binds (MI:0407) to mpa (uniprotkb:Q0G9Y7) by pull down (MI:0096) MINT-7262440: mpa (uniprotkb:Q0G9Y7) and pup (uniprotkb:B6DAC1) bind (MI:0407) by isothermal titration calorimetry (MI:0065
Repression of Sex4 and Like Sex Four2 Orthologs in Potato Increases Tuber Starch Bound Phosphate With Concomitant Alterations in Starch Physical Properties
To examine the roles of starch phosphatases in potatoes, transgenic lines were produced where orthologs of SEX4 and LIKE SEX FOUR2 (LSF2) were repressed using RNAi constructs. Although repression of either SEX4 or LSF2 inhibited leaf starch degradation, it had no effect on cold-induced sweetening in tubers. Starch amounts were unchanged in the tubers, but the amount of phosphate bound to the starch was significantly increased in all the lines, with phosphate bound at the C6 position of the glucosyl units increased in lines repressed in StSEX4 and in the C3 position in lines repressed in StLSF2 expression. This was accompanied by a reduction in starch granule size and an alteration in the constituent glucan chain lengths within the starch molecule, although no obvious alteration in granule morphology was observed. Starch from the transgenic lines contained fewer chains with a degree of polymerization (DP) of less than 17 and more with a DP between 17 and 38. There were also changes in the physical properties of the starches. Rapid viscoanalysis demonstrated that both the holding strength and the final viscosity of the high phosphate starches were increased indicating that the starches have increased swelling power due to an enhanced capacity for hydration
Modification of Cassava Root Starch Phosphorylation Enhances Starch Functional Properties
Cassava (Manihot esculenta Crantz) is a root crop used as a foodstuff and as a starch source in industry. Starch functional properties are influenced by many structural features including the relative amounts of the two glucan polymers amylopectin and amylose, the branched structure of amylopectin, starch granule size and the presence of covalent modifications. Starch phosphorylation, where phosphates are linked either to the C3 or C6 carbon atoms of amylopectin glucosyl residues, is a naturally occurring modification known to be important for starch remobilization. The degree of phosphorylation has been altered in several crops using biotechnological approaches to change expression of the starch-phosphorylating enzyme GLUCAN WATER DIKINASE (GWD). Interestingly, this frequently alters other structural features of starch beside its phosphate content. Here, we aimed to alter starch phosphorylation in cassava storage roots either by manipulating the expression of the starch phosphorylating or dephosphorylating enzymes. Therefore, we generated transgenic plants in which either the wild-type potato GWD (StGWD) or a redox-insensitive version of it were overexpressed. Further plants were created in which we used RNAi to silence each of the endogenous phosphoglucan phosphatase genes STARCH EXCESS 4 (MeSEX4) and LIKE SEX4 2 (MeLSF), previously discovered by analyzing leaf starch metabolism in the model species Arabidopsis thaliana. Overexpressing the potato GWD gene (StGWD), which specifically phosphorylates the C6 position, increased the total starch-bound phosphate content at both the C6 and the C3 positions. Silencing endogenous LSF2 gene (MeLSF2), which specifically dephosphorylates the C3 position, increased the ratio of C3:C6 phosphorylation, showing that its function is conserved in storage tissues. In both cases, other structural features of starch (amylopectin structure, amylose content and starch granule size) were unaltered. This allowed us to directly relate the physicochemical properties of the starch to its phosphate content or phosphorylation pattern. Starch swelling power and paste clarity were specifically influenced by total phosphate content. However, phosphate position did not significantly influence starch functional properties. In conclusion, biotechnological manipulation of starch phosphorylation can specifically alter certain cassava storage root starch properties, potentially increasing its value in food and non-food industries.ISSN:1664-462
Prion Protein mPrP[F175A](121-231): Structure and Stability in Solution
The three-dimensional structures of prion proteins (PrPs) in the cellular form (PrP(C)) include a stacking interaction between the aromatic rings of the residues Y169 and F175, where F175 is conserved in all but two so far analyzed mammalian PrP sequences and where Y169 is strictly conserved. To investigate the structural role of F175, we characterized the variant mouse prion protein mPrP[F175A](121-231). The NMR solution structure represents a typical PrP(C)-fold, and it contains a 3(10)-helical β2-α2 loop conformation, which is well defined because all amide group signals in this loop are observed at 20°C. With this "rigid-loop PrP(C)" behavior, mPrP[F175A](121-231) differs from the previously studied mPrP[Y169A](121-231), which contains a type I β-turn β2-α2 loop structure. When compared to other rigid-loop variants of mPrP(121-231), mPrP[F175A](121-231) is unique in that the thermal unfolding temperature is lowered by 8°C. These observations enable further refined dissection of the effects of different single-residue exchanges on the PrP(C) conformation and their implications for the PrP(C) physiological function
Structural plasticity of the cellular prion protein and implications in health and disease
Two lines of transgenic mice expressing mouse/elk and mouse/horse prion protein (PrP) hybrids, which both form a well-structured β2-α2 loop in the NMR structures at 20 °C termed rigid-loop cellular prion proteins (RL-PrP(C)), presented with accumulation of the aggregated scrapie form of PrP in brain tissue, and the mouse/elk hybrid has also been shown to develop a spontaneous transmissible spongiform encephalopathy. Independently, there is in vitro evidence for correlations between the amino acid sequence in the β2-α2 loop and the propensity for conformational transitions to disease-related forms of PrP. To further contribute to the structural basis for these observations, this paper presents a detailed characterization of RL-PrP(C) conformations in solution. A dynamic local conformational polymorphism involving the β2-α2 loop was found to be evolutionarily preserved among all mammalian species, including those species for which the WT PrP forms an RL-PrP(C). The interconversion between two ensembles of PrP(C) conformers that contain, respectively, a 310-helix turn or a type I β-turn structure of the β2-α2 loop, exposes two different surface epitopes, which are analyzed for their possible roles in the still evasive function of PrP(C) in healthy organisms and/or at the onset of a transmissible spongiform encephalopathy
Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein
The Bombyx mori pheromone-binding protein (BmorPBP) is known to adopt two different conformations. These are BmorPBP(A), where a regular helix formed by the C-terminal dodecapeptide segment, α7, occupies the ligand-binding cavity, and BmorPBP(B), where the binding site is free to accept ligands. NMR spectra of delipidated BmorPBP solutions at the physiological pH of the bulk sensillum lymph near pH 6.5 show only BmorPBP(A), and in mixtures, the two species are in slow exchange on the chemical shift frequency scale. This equilibrium has been monitored at variable pH and ligand concentrations, demonstrating that it is an intrinsic property of BmorPBP that is strongly affected by pH variation and ligand binding. This polymorphism tunes BmorPBP for optimal selective pheromone transport: Competition between α7 and lipophilic ligands for its binding cavity enables selective uptake of bombykol at the pore endings in the sensillum wall, whereas compounds with lower binding affinity can only be bound in the bulk sensillum lymph. After transport across the bulk sensillum lymph into the lower pH area near the dendritic membrane surface, bombykol is ejected near the receptor, whereas compounds with lower binding affinity are ejected before reaching the olfactory receptor, rendering them susceptible to degradation by enzymes present in the sensillum lymph
Structural and Mechanistic Insights into Poly(uridine) Tract Recognition by the hnRNP C RNA Recognition Motif
HnRNP C is a ubiquitous RNA regulatory
factor and the principal
constituent of the nuclear hnRNP core particle. The protein contains
one amino-terminal RNA recognition motif (RRM) known to bind uridine
(U)-rich sequences. This work provides a molecular and mechanistic
understanding of this interaction. We solved the solution structures
of the RRM in complex with poly(U) oligomers of five and seven nucleotides.
The five binding pockets of RRM recognize uridines with an unusual
5′-to-3′ gradient of base selectivity. The target recognition
is therefore strongly sensitive to base clustering, explaining the
preference for contiguous uridine tracts. Using a novel approach integrating
the structurally derived recognition consensus of the RRM with a thermodynamic
description of its multi-register binding, we modeled the saturation
of cellular uridine tracts by this protein. The binding pattern is
remarkably consistent with the experimentally observed transcriptome-wide
cross-link distribution of the full-length hnRNP C on short uridine
tracts. This result re-establishes the RRM as the primary RNA-binding
domain of the hnRNP C tetramer and provides a proof of concept
for interpreting high-throughput interaction data using structural
approaches
Molecular basis for disassembly of an importin:ribosomal protein complex by the escortin Tsr2
Disordered extensions at the termini and short internal insertions distinguish eukaryotic ribosomal proteins (r-proteins) from their anucleated archaeal counterparts. Here, we report an NMR structure of such a eukaryotic-specific segment (ESS) in the r-protein eS26 in complex with the escortin Tsr2. The structure reveals how ESS attracts Tsr2 specifically to importin:eS26 complexes entering the nucleus in order to trigger non-canonical RanGTP-independent disassembly. Tsr2 then sequesters the released eS26 and prevents rebinding to the importin, providing an alternative allosteric mechanism to terminate the process of nuclear import. Notably, a Diamond-Blackfan anemia-associated Tsr2 mutant protein is impaired in binding to ESS, unveiling a critical role for this interaction in human hematopoiesis. We propose that eS26-ESS and Tsr2 are components of a nuclear sorting system that co-evolved with the emergence of the nucleocytoplasmic barrier and transport carriers