18 research outputs found

    Evaluation of PCR on Bronchoalveolar Lavage Fluid for Diagnosis of Invasive Aspergillosis: A Bivariate Metaanalysis and Systematic Review

    Get PDF
    BACKGROUND: Nucleic acid detection by polymerase chain reaction (PCR) is emerging as a sensitive and rapid diagnostic tool. PCR assays on serum have the potential to be a practical diagnostic tool. However, PCR on bronchoalveolar lavage fluid (BALF) has not been well established. We performed a systematic review of published studies to evaluate the diagnostic accuracy of PCR assays on BALF for invasive aspergillosis (IA). METHODS: Relevant published studies were shortlisted to evaluate the quality of their methodologies. A bivariate regression approach was used to calculate pooled values of the method sensitivity, specificity, and positive and negative likelihood ratios. Hierarchical summary receiver operating characteristic curves were used to summarize overall performance. We calculated the post-test probability to evaluate clinical usefulness. Potential heterogeneity among studies was explored by subgroup analyses. RESULTS: Seventeen studies comprising 1191 at-risk patients were selected. The summary estimates of the BALF-PCR assay for proven and probable IA were as follows: sensitivity, 0.91 (95% confidence interval (CI), 0.79-0.96); specificity, 0.92 (95% CI, 0.87-0.96); positive likelihood ratio, 11.90 (95% CI, 6.80-20.80); and negative likelihood ratio, 0.10 (95% CI, 0.04-0.24). Subgroup analyses showed that the performance of the PCR assay was influenced by PCR assay methodology, primer design and the methods of cell wall disruption and DNA extraction. CONCLUSIONS: PCR assay on BALF is highly accurate for diagnosing IA in immunocompromised patients and is likely to be a useful diagnostic tool. However, further efforts towards devising a standard protocol are needed to enable formal validation of BALF-PCR

    Additive Contributions of Two Manganese-Cored Superoxide Dismutases (MnSODs) to Antioxidation, UV Tolerance and Virulence of Beauveria bassiana

    Get PDF
    The biocontrol potential of entomopathogenic fungi against arthropod pests depends on not only their virulence to target pests but tolerance to outdoor high temperature and solar UV irradiation. Two Beauveria bassiana superoxide dismutases (SODs), BbSod2 and BbSod3, were characterized as cytosolic and mitochondrial manganese-cored isoenzymes (MnSODs) dominating the total SOD activity of the fungal entomopathogen under normal growth conditions. To probe their effects on the biocontrol potential of B. bassiana, ΔBbSod2, ΔBbSod3, and three hairpin RNA-interfered (RNAi) mutants with the transcripts of both BbSod2 and BbSod3 being suppressed by 91–97% were constructed and assayed for various phenotypic parameters in conjunction with ΔBbSod2/BbSod2, ΔBbSod3/BbSod3 and wild-type (control strains). In normal cultures, the knockout and RNAi mutants showed significant phenotypic alterations, including delayed sporulation, reduced conidial yields, and impaired conidial quality, but little change in colony morphology. Their mycelia or conidia became much more sensitive to menadione or H2O2-induced oxidative stress but had little change in sensitivity to the hyperosmolarity of NaCl and the high temperature of 45°C. Accompanied with the decreased antioxidative capability, conidial tolerances to UV-A and UV-B irradiations were reduced by 16.8% and 45.4% for ΔBbSod2, 18.7% and 44.7% for ΔBbSod3, and ∼33.7% and ∼63.8% for the RNAi mutants, respectively. Their median lethal times (LT50s) against Myzus persicae apterae, which were topically inoculated under a standardized spray, were delayed by 18.8%, 14.5% and 37.1%, respectively. Remarkably, the effects of cytosolic BbSod2 and mitochondrial BbSod3 on the phenotypic parameters important for the fungal bioncontrol potential were additive, well in accordance with the decreased SOD activities and the increased superoxide levels in the knockout and RNAi mutants. Our findings highlight for the first time that the two MnSODs co-contribute to the biocontrol potential of B. bassiana by mediating cellular antioxidative response

    Manganese superoxide dismutase based phylogeny of pathogenic fungi36761

    No full text
    Superoxide dismutases (SODs), which provide protection against oxidative stress, exhibit an essential role for fungal cell survival, especially during host invasion. Here, 20 partial SOD sequences from 19 pathogenic fungi were determined and aligned with 43 homologous fungal sequences from databases. All sequences encoded tetrameric manganese (Mn)-containing SODs showing predicted cytosolic or mitochondrial subcellular localization. Numerous fungi possessed both cytosolic and mitochondrial MnSODs in addition to the mainly cytosolic copper/zinc isozyme. Moreover, MnSOD sequence variability was higher than SSU rRNA and similar to ITS rRNA, suggesting MnSOD could be used to identify closely related fungal species. MnSOD- and SSU rRNA-based phylogenetic trees were constructed and compared. Despite a more complex topology of the MnSOD tree, due to several gene duplication events, all the classic fungal classes and orders were recovered. A salient point was the existence of two paralogous cytosolic and mitochondrial MnSODs in some Ascomycota. A hypothetical evolutionary scenario with an early gene duplication of the &quot;mitochondrial&quot; gene is proposed</p
    corecore