377 research outputs found

    CFD modelling of wind turbine airfoil aerodynamics

    Get PDF
    This paper reports the first findings of an ongoing research programme on wind turbine computational aerodynamics at the University of Glasgow. Several modeling aspects of wind turbine airfoil aerodynamics based on the solution of the Reynoldsaveraged Navier-Stokes (RANS) equations are addressed. One of these is the effect of an a priori method for structured grid adaptation aimed at improving the wake resolution. Presented results emphasize that the proposed adaptation strategy greatly improves the wake resolution in the far-field, whereas the wake is completely diffused by the non-adapted grid with the same number and distribution of grid nodes. A grid refinement analysis carried out with the adapted grid shows that the improvements of flow resolution thus achieved are of a smaller magnitude with respect to those accomplished by adapting the grid keeping constant the number of nodes. The proposed adaptation approach can be easily included in the structured generation process of both commercial and in-house structured mesh generators systems. The study also aims at quantifying the solution inaccuracy arising from not modeling the laminar-to-turbulent transition. It is found that the drag forces obtained by considering the flow as transitional or fully turbulent may differ by 50 %. The impact of various turbulence models on the predicted aerodynamic forces is also analyzed. All these issues are investigated using a special-purpose hyperbolic grid generator and a multi-block structured finitevolume RANS code. The numerical experiments consider the flow field past a wind turbine airfoil for which an exhaustive campaign of steady and unsteady experimental measurements was conducted. The predictive capabilities of the CFD solver are validated by comparing experimental data and numerical predictions for selected flow regimes. The incompressible analysis and design code XFOIL is also used to support the findings of the comparative analysis of numerical RANS-based results and experimental data

    Energetics and development modes of Asteroidea (Echinodermata) from the Southwestern Atlantic Ocean including Burdwood Bank/MPA Namuncurá

    Get PDF
    Reproduction is a highly expensive process that during gonadal development requires an important supply of nutrients. The allocation of energy can vary throughout the reproductive cycle, between sexes and development modes. During research cruise aboard the RV Puerto Deseado in April 2016, we collected fifteen species of sea stars from the southernmost region of Argentina. The main purposes of the present study were threefold: first, to revise and report novel information on the reproductive strategies and energetic density (ED) of body components from the asteroids of the southwestern Atlantic Ocean including Burdwood Bank/ MPA Namuncurá; second, to compare the ED of these body components across species with contrasting reproductive strategies; third, to provide a tool to estimate the ED from dry mass of organs of the sea star species examined. Ovaries of Diplopteraster verrucosus (a brooder with a nidamental chamber) revealed a significantly greater ED than did the testes (29.81 ± 1.38 and 17.76 ± 1.59, respectively). In Glabraster antarctica (a broadcaster with yolky eggs and facultative planktotrophic larvae), the gonads had EDs of 25.78 ± 3.16 and 19.21 ± 0.52 (females and males, respectively). While in Peribolaster folliculatus (a broadcaster with eggs with low yolk content and inferred planktotrophic larvae) there was no significant difference in the ED values between sexes (females: 22.79 ± 1.10 and males: 20.46 ± 1.05). For the pyloric caeca, ED values did not reveal any difference between sexes, although in P. folliculatus, the ED was significantly higher than that for D. verrucosus and G. antarctica (25.90 ± 1.00, 23.03 ± 0.34, and 22.66 ± 0.65, respectively). The body wall had higher ED values in D. verrucosus and P. folliculatus than that for all the sea star species analyzed (46.48 ± 1.63, 51.17 ± 1.34, respectively). Higher ED values in the ovaries could be related to the nutrition of offspring, while differences found in the body wall may reflect the skeletal structure of this body component. This research provides basic information for understanding the differences on energetic allocation when contrasting development modes are considered.Fil: Fraysse, Cintia Pamela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Pérez, Analía F.. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Calcagno, Javier Ángel. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Boy, Claudia Clementina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentin

    Comparability of measured acceleration from accelerometry-based activity monitors

    Get PDF
    Accelerometers that provide triaxial measured acceleration data are now available. However, equivalence of output between brands cannot be assumed and testing is necessary to determine whether features of the acceleration signal are interchangeable.National Osteoporosis Societ

    Molecular Weight Dependence of Spreading Rates of Ultrathin Polymeric Films

    Full text link
    We study experimentally the molecular weight MM dependence of spreading rates of molecularly thin precursor films, growing at the bottom of droplets of polymer liquids. In accord with previous observations, we find that the radial extension R(t) of the film grows with time as R(t) = (D_{exp} t)^{1/2}. Our data substantiate the M-dependence of D_{exp}; we show that it follows D_{exp} \sim M^{-\gamma}, where the exponent \gamma is dependent on the chemical composition of the solid surface, determining its frictional properties with respect to the molecular transport. In the specific case of hydrophilic substrates, the frictional properties can be modified by the change of the relative humidity (RH). We find that \gamma \approx 1 at low RH and tends to zero when RH gets progressively increased. We propose simple theoretical arguments which explain the observed behavior in the limits of low and high RH.Comment: 4 pages, 2 figures, to appear in PR

    Diffusive Spreading of Chainlike Molecules on Surfaces

    Full text link
    We study the diffusion and submonolayer spreading of chainlike molecules on surfaces. Using the fluctuating bond model we extract the collective and tracer diffusion coefficients D_c and D_t with a variety of methods. We show that D_c(theta) has unusual behavior as a function of the coverage theta. It first increases but after a maximum goes to zero as theta go to one. We show that the increase is due to entropic repulsion that leads to steep density profiles for spreading droplets seen in experiments. We also develop an analytic model for D_c(theta) which agrees well with the simulations.Comment: 3 pages, RevTeX, 4 postscript figures, to appear in Phys. Rev. Letters (1996

    Development and evaluation of a method to define a tibial coordinate system through the fitting of geometric primitives

    Get PDF
    Coordinate system definition is a critical element of biomechanical modeling of the knee, and cases of skeletal trauma present major technical challenges. This paper presents a method to define a tibial coordinate system by fitting geometric primitives to surface anatomy requiring minimal user input. The method presented here utilizes a conical fit to both the tibial shaft and femoral condyles to generate independent axes forming the basis of a tibial coordinate system. Definition of the tibial axis showed high accuracy when shape fitting to ≥50 mm of shaft with <3° of angular variation from the axis obtained using the full tibia. Repeatability and reproducibility of the axis was compared using intraclass correlation coefficients which showed excellent intra- and inter-observer agreement across cases. Additionally, shape fitting to the distal femoral condyles showed high accuracy compared to the reference axis established automatically through identifying the medial and lateral epicondyles (<4°). Utilizing geometric primitives to estimate functional axes for the tibia and femur removes reliance on anatomical landmarks that can be displaced by fracture or inaccurately identified by observers. Furthermore, fitting of such primitives provides a more complete understanding of the true bony anatomy, which cannot be done through simple landmark identification.Stuart C. Millar, John B. Arnold, Lucian B. Solomon, Dominic Thewlis and François Frayss

    Avalanche Dynamics in Wet Granular Materials

    Full text link
    We have studied the dynamics of avalanching wet granular media in a rotating drum apparatus. Quantitative measurements of the flow velocity and the granular flux during avalanches allow us to characterize novel avalanche types unique to wet media. We also explore the details of viscoplastic flow (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at high rotation rates and novel robust pattern formation in the granular surface.Comment: 5 pages, 3 figures in color, REVTeX4, for smaller pdfs see http://angel.elte.hu/~tegzes/condmat.htm

    Aging in humid granular media

    Full text link
    Aging behavior is an important effect in the friction properties of solid surfaces. In this paper we investigate the temporal evolution of the static properties of a granular medium by studying the aging over time of the maximum stability angle of submillimetric glass beads. We report the effect of several parameters on these aging properties, such as the wear on the beads, the stress during the resting period, and the humidity content of the atmosphere. Aging effects in an ethanol atmosphere are also studied. These experimental results are discussed at the end of the paper.Comment: 7 pages, 9 figure

    Dynamics of electrostatically-driven granular media. Effects of Humidity

    Full text link
    We performed experimental studies of the effect of humidity on the dynamics of electrostatically-driven granular materials. Both conducting and dielectric particles undergo a phase transition from an immobile state (granular solid) to a fluidized state (granular gas) with increasing applied field. Spontaneous precipitation of solid clusters from the gas phase occurs as the external driving is decreased. The clustering dynamics in conducting particles is primarily controlled by screening of the electric field but is aided by cohesion due to humidity. It is shown that humidity effects dominate the clustering process with dielectric particles.Comment: 4 pages, 4 fig

    Thermocapillary actuation of liquid flow on chemically patterned surfaces

    Get PDF
    We have investigated the thermocapillary flow of a Newtonian liquid on hydrophilic microstripes which are lithographically defined on a hydrophobic surface. The speed of the microstreams is studied as a function of the stripe width w, the applied thermal gradient |dT/dx| and the liquid volume V deposited on a connecting reservoir pad. Numerical solutions of the flow speed as a function of downstream position show excellent agreement with experiment. The only adjustable parameter is the inlet film height, which is controlled by the ratio of the reservoir pressure to the shear stress applied to the liquid stream. In the limiting cases where this ratio is either much smaller or much larger than unity, the rivulet speed shows a power law dependency on w, |dT/dx| and V. In this study we demonstrate that thermocapillary driven flow on chemically patterned surfaces can provide an elegant and tunable method for the transport of ultrasmall liquid volumes in emerging microfluidic technologies
    corecore