230 research outputs found

    Cold Nuclear Matter Effects and Heavy Quark Production in PHENIX

    Full text link
    The PHENIX experiment uses semileptonic decay channels to measure open and closed heavy flavor cross sections across the rapidity range 2.2<y<2.4-2.2 < y < 2.4. High luminosity data are now available for p+p, d+Au, Cu+Cu and Au+Au collisions at sNN\sqrt{s_{NN}}=200 GeV, and for Au+Au collisions at sNN\sqrt{s_{NN}}= 62 GeV. We discuss recent d+Au results for open heavy flavor and J/ψJ/\psi production, and discuss their implications for the cold nuclear matter contributions to heavy flavor production in heavy ion collisions.Comment: 8 pages, 9 figures. Proceedings for talk at Hard Probes 201

    Quarkonia Measurements with STAR

    Get PDF
    We report results on quarkonium production from the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). J/psi spectra in p+p and Cu+Cu collisions at sqrt(s) = 200 GeV with transverse momenta in the range of 0.5-14 GeV/c and 5-8 GeV/c, respectively, are presented. We find that for p_T > 5 GeV/c yields in p+p collisions are consistent with those in minimum-bias Cu+Cu collisions scaled with the respective number of binary nucleon-nucleon collisions. In this range the nuclear modification factor, R_AA, is measured to be 0.9+-0.2(stat). For the first time at RHIC, high-p_T J/psi-hadron correlations were studied in p+p collisions. Implications from our measurements on J/psi production mechanisms, constraints on open bottom yields, and J/psi dissociation mechanisms at high-p_T are discussed. In addition, we give a brief status of measurements of Upsilon production in p+p and Au+Au collisions and present projections of future quarkonia measurements based on an upgrades to the STAR detector and increased luminosity achieved through stochastic cooling of RHIC.Comment: 5 pages, 5 figures. Prepared for 3rd International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2008), A Toxa, Spain, June 8-14, 200

    C10 and 11B+ 12C reactions from 4 to 9 MeV/nucleon

    Get PDF
    Reaction products arising from the interaction of 11B+ 12C and 10B+ 13C have been studied in the energy range 4<Elab(B)<9 MeV/nucleon. From the total fusion cross sections for the two entrance channels, the critical angular momenta have been extracted and then compared as a function of compound nucleus excitation energy. Even though a limitation in the fusion cross section was observed, no common limitation was found in the critical angular momenta for these two systems up to at least a Na23 excitation energy of 60 MeV. Above this excitation energy, the experimental uncertainties make this point less clear. Up to an excitation energy of 60 MeV in Na23, a fusion limitation based on reaching a critical density of compound nucleus states like the yrast or ''statistical'' yrast line cannot be responsible for the fusion cross section limitations observed for these entrance channels. The present data suggest that competing entrance channel processes are responsible for the observed fusion cross section limitations

    Energy dependence of fusion evaporation-residue cross sections in the Si28+12C reaction

    Get PDF
    Fusion evaporation-residue cross sections for the Si28+12C reaction have been measured in the energy range 18≤Ec.m.≤136 MeV using time-of-flight techniques. Velocity distributions of mass-identified reaction products were used to identify evaporation residues and to determine the complete-fusion cross sections at high energies. The data are in agreement with previously established systematics which indicate an entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models

    Nuclear effects on J/{\psi} production in proton-nucleus collisions

    Full text link
    The study of nuclear effects for J/{\psi} production in proton-nucleus collisions is crucial for a correct interpretation of the J/{\psi} suppression patterns experimentally observed in heavy-ion collisions. By means of three representative sets of nuclear parton distribution, the energy loss effect in the initial state and the nuclear absorption effect in the final state are taken into account in the uniform framework of the Glauber model. A leading order phenomenological analysis is performed on J/{\psi} production cross-section ratios RW/Be(xF) for the E866 experimental data. The J/{\psi} suppression is investigated quantitatively due to the different nuclear effects. It is shown that the energy loss effect with resulting in the suppression on RW/Be(xF) is more important than the nuclear effects on parton distributions in high xF region. The E866 data in the small xF keep out the nuclear gluon distribution with a large anti-shadowing effect. However, the new HERA-B measurement is not in support of the anti-shadowing effect in the nuclear gluon distribution. It is found that the J/{\psi}-nucleon inelastic cross section {\sigma} J/{\psi} abs depends on the kinematical variable xF, and increases as xF in the region xF > 0.2. 1 Introductio

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore