1,060 research outputs found
Multi-criteria investigation of a pumped thermal electricity storage (PTES) system with thermal integration and sensible heat storage
In the present paper a multicriteria analysis of a Rankine Pumped Thermal Electricity Storage (PTES) system with low-grade thermal energy integration is performed. The system is composed by an ORC for the discharging phase and a high-temperature heat pump for the charging phase. As previously demonstrated, the low-grade thermal energy can be provided at the heat pump evaporator to boost the PTES performances. As it regards the multi-criteria analysis, a tradeoff is required when electric-to-electric energy ratio ηrt, total exergy exploitation efficiency Ïut and energy density Ïen, are maximized concurrently. By means of multi-objective optimization, theoretical performances of the system are derived in two different layouts, which are differentiated by the presence, or not, of internal regeneration in charge and discharge subsystems. Results showed that regeneration can be very effective, as it relaxes the tradeoff between the objectives, thus yielding better global performances. Pareto fronts are built and explored to characterize the PTES system. Configurations of interest are proposed, and PTES performances are compared with other storage technologies. Theoretical results showed that, by exploiting thermal energy at temperature lower than 80 °C, ηrt â 0.55 and Ïen â 15 kWh/m3 can be concurrently achieved. This can be done at the cost of an inefficient exploitation of the thermal source, as Ïut â 0.05. If higher total exergy utilization efficiency is required, storage density can still be maintained high, but ηrt must drop down to 0.4
Rankine carnot batteries with the integration of thermal energy sources: A review
This paper provides an overview of a novel electric energy storage technology. The Thermally Integrated Pumped Thermal Electricity Storage (TI-PTES) stores electric energy as thermal exergy. Compared to standard PTES, TI-PTES takes advantage of both electric and low-temperature heat inputs. Therefore, TI-PTES is a hybrid technology between storage and electric production from low-temperature heat. TI-PTES belongs to a technology group informally referred to as Carnot Batteries (CBs). As the TI-PTES grows in popularity, several configurations have been proposed, with different claimed performances, but no standard has emerged to date. The study provides an overview of the component and operating fluid selection, and it describes the configurations proposed in the literature. Some issues regarding the performance, the ratio between thermal and electrical inputs, and the actual TI-PTES utilisation in realistic scenarios are discussed. As a result, some guidelines are defined. The configurations that utilise high-temperature thermal reservoirs are more extensively studied, due to their superior thermodynamic performance. However, low-temperature TI-PTES may achieve similar performance and have easier access to latent heat storage in the form of water ice. Finally, to achieve satisfactory performance, TI-PTES must absorb a thermal input several times larger than the electric one. This limits TI-PTES to small-scale applications
Influence of emitter-receiver number on measurement accuracy in acoustic pyrometry
Acoustic pyrometry is an interesting technique that may find several useful applications in turbomachinery. As the speed of sound is directly related a medium temperature, this measurement technique estimates the temperature of a gas by considering the time of flight of an acoustic wave moving through it. If only an acoustic emitter-receiver couple is used, only the average temperature along the acoustic path can be determined. If multiple emitter-receiver couples laying on the same plane are used, a reconstruction of the temperature map in the section is possible. This estimation is performed by considering that multiple acoustic paths travel across the same sub-portions of the section and, therefore, the temperature of each sub-portion affects the time of flight along several sound paths. Many parameters affect the accuracy of the measurement, and they are related to the physic of the phenomena involved in the measurement, the accuracy of the instrumentation used, the interaction between the acoustic wave and the flow velocity and the hardware set-up. In this study, the impact of some set-up parameters on the accuracy of the measurement was investigated and, in particular, the number of sound emitter-receiver couples and the number of investigation sub-portions in which the section is divided. A reference temperature map has been considered as a benchmark. This study, which is a preliminary investigation on this technique, was useful to assess the capability of this methodology to correctly describe a temperature distribution in an ideal condition. Therefore, it represents a first step in the set-up of an experimental investigation with an acoustic pyrometer.
Limitations in the Use of the Equivalent Diameter
This paper deals with the inaccuracy assessment of the friction pressure loss estimation based on
Darcy formula combined with an equivalent hydraulic diameter and a friction factor valid for circular
pipes when applied to a square rod bundle. The assessment has been done by comparing the analytical
and semi-empirical predictions with two different CFD codes results: CFX and NEPTUNE_CFD.
Two different analytical approaches have been considered: the whole-bundle and sub-channel approaches,
both for laminar and turbulent flow conditions. Looking at results, it is reasonable to
assume that an error in the range of 11% - 23% is likely when using equivalent diameter in the
laminar regime. In the case of turbulent regime, the equivalent diameter works better and the error
is in the range between a few percent and ~12%
ramp rate abatement for wind energy integration in microgrids
Abstract This study analyses the performance of a battery storage system in abating the ramp rates of the power produced by a wind turbine. This approach can reduce the wind power fluctuations that are typical of small size wind farms and promote the wind energy integration in microgrids. Production data was generated from actual wind measurements over one year, and the capability of ramp abatement by varying battery capacity, battery power rating and ramp rate thresholds was investigated. The effect on battery degradation due to charge-discharge cycling required by the smoothing service was also estimated. Results suggest that good smoothing performance can be achieved with a wide range of power-capacity combinations, but the lifetime of the storage system can be as low as one year if its capacity is small
Ramp rate abatement for wind energy integration in microgrids
This study analyses the performance of a battery storage system in abating the ramp rates of the power produced by a wind turbine. This approach can reduce the wind power fluctuations that are typical of small size wind farms and promote the wind energy integration in microgrids. Production data was generated from actual wind measurements over one year, and the capability of ramp abatement by varying battery capacity, battery power rating and ramp rate thresholds was investigated. The effect on battery degradation due to charge-discharge cycling required by the smoothing service was also estimated. Results suggest that good smoothing performance can be achieved with a wide range of power-capacity combinations, but the lifetime of the storage system can be as low as one year if its capacity is small
Unmet needs in ANCA-associated vasculitis: Physiciansâ and patientsâ perspectives
In recent years, clinical research has increased significantly and therapies for antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis have improved. However, there are still unanswered questions and unmet needs about AAV patients. The purpose of this review is to examine the frontiers of research related to emerging biomarkers eventually predicting relapse, and new therapeutic approaches, not to mention new quality of life assessment tools. Identifying predictors of relapse may help optimize therapeutic strategies, minimize disease recurrence, and reduce treatment-related side effects. In addition, it is important to recognize that patients may suffer long-term consequences of the disease and its treatment, which, although life-saving, is often associated with significant side effects. Our goal, therefore, is to highlight what has been achieved, the pitfalls, and what still needs to be done, comparing the views of physicians and patients
Volcanic ash detection and retrievals using MODIS data by means of neural networks
Volcanic ash clouds detection and retrieval represent a key issue for aviation safety due to the harming effects on aircraft. A lesson learned from the recent Eyjafjallajokull eruption is the need to obtain accurate and reliable retrievals on a real time basis. <br><br> In this work we have developed a fast and accurate Neural Network (NN) approach to detect and retrieve volcanic ash cloud properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) data in the Thermal InfraRed (TIR) spectral range. Some measurements collected during the 2001, 2002 and 2006 Mt. Etna volcano eruptions have been considered as test cases. <br><br> The ash detection and retrievals obtained from the Brightness Temperature Difference (BTD) algorithm are used as training for the NN procedure that consists in two separate steps: ash detection and ash mass retrieval. The ash detection is reduced to a classification problem by identifying two classes: "ashy" and "non-ashy" pixels in the MODIS images. Then the ash mass is estimated by means of the NN, replicating the BTD-based model performances. A segmentation procedure has also been tested to remove the false ash pixels detection induced by the presence of high meteorological clouds. The segmentation procedure shows a clear advantage in terms of classification accuracy: the main drawback is the loss of information on ash clouds distal part. <br><br> The results obtained are very encouraging; indeed the ash detection accuracy is greater than 90%, while a mean RMSE equal to 0.365 t km<sup>â2</sup> has been obtained for the ash mass retrieval. Moreover, the NN quickness in results delivering makes the procedure extremely attractive in all the cases when the rapid response time of the system is a mandatory requirement
Neural network multispectral satellite images classification of volcanic ash plumes in a cloudy scenario
This work shows the potential use of neural networks in the characterization of eruptive events monitored by satellite, through fast and automatic classification of multispectral images. The algorithm has been developed for the MODIS instrument and can easily be extended to other similar sensors. Six classes have been defined paying particular attention to image regions that represent the different surfaces that could
possibly be found under volcanic ash clouds. Complex cloudy scenarios composed by images collected during the Icelandic eruptions of the Eyjafjallajökull (2010) and Grimsvötn (2011) volcanoes have been considered as test cases. A sensitivity analysis on the MODIS TIR and VIS channels has been performed
to optimize the algorithm. The neural network has been trained with the first image of the dataset, while the remaining data have been considered as independent validation sets. Finally, the neural network classifierâs results have been compared with maps classified with several interactive procedures performed in a consolidated operational framework. This comparison shows that the automatic methodology proposed
achieves a very promising performance, showing an overall accuracy greater than 84%, for the Eyjafjallajökull event, and equal to 74% for the Grimsvötn event
- âŠ