252 research outputs found
First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO
The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developed a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed
Assortative mating and differential male mating success in an ash hybrid zone population
BACKGROUND: The structure and evolution of hybrid zones depend mainly on the relative importance of dispersal and local adaptation, and on the strength of assortative mating. Here, we study the influence of dispersal, temporal isolation, variability in phenotypic traits and parasite attacks on the male mating success of two parental species and hybrids by real-time pollen flow analysis. We focus on a hybrid zone population between the two closely related ash species Fraxinus excelsior L. (common ash) and F. angustifolia Vahl (narrow-leaved ash), which is composed of individuals of the two species and several hybrid types. This population is structured by flowering time: the F. excelsior individuals flower later than the F. angustifolia individuals, and the hybrid types flower in-between. Hybrids are scattered throughout the population, suggesting favorable conditions for their local adaptation. We estimate jointly the best-fitting dispersal kernel, the differences in male fecundity due to variation in phenotypic traits and level of parasite attack, and the strength of assortative mating due to differences in flowering phenology. In addition, we assess the effect of accounting for genotyping error on these estimations. RESULTS: We detected a very high pollen immigration rate and a fat-tailed dispersal kernel, counter-balanced by slight phenological assortative mating and short-distance pollen dispersal. Early intermediate flowering hybrids, which had the highest male mating success, showed optimal sex allocation and increased selfing rates. We detected asymmetry of gene flow, with early flowering trees participating more as pollen donors than late flowering trees. CONCLUSION: This study provides striking evidence that long-distance gene flow alone is not sufficient to counter-act the effects of assortative mating and selfing. Phenological assortative mating and short-distance dispersal can create temporal and spatial structuring that appears to maintain this hybrid population. The asymmetry of gene flow, with higher fertility and increased selfing, can potentially confer a selective advantage to early flowering hybrids in the zone. In the event of climate change, hybridization may provide a means for F. angustifolia to further extend its range at the expense of F. excelsior
Realtime calibration of the A4 electromagnetic lead fluoride calorimeter
Sufficient energy resolution is the key issue for the calorimetry in particle
and nuclear physics. The calorimeter of the A4 parity violation experiment at
MAMI is a segmented calorimeter where the energy of an event is determined by
summing the signals of neighbouring channels. In this case the precise matching
of the individual modules is crucial to obtain a good energy resolution. We
have developped a calibration procedure for our total absorbing electromagnetic
calorimeter which consists of 1022 lead fluoride (PbF_2) crystals. This
procedure reconstructs the the single-module contributions to the events by
solving a linear system of equations, involving the inversion of a 1022 x
1022-matrix. The system has shown its functionality at beam energies between
300 and 1500 MeV and represents a new and fast method to keep the calorimeter
permanently in a well-calibrated state
Eta-Helium Quasi-Bound States
The cross section and tensor analysing power t_20 of the d\vec{d}->eta 4He
reaction have been measured at six c.m. momenta, 10 < p(eta) < 90 MeV/c. The
threshold value of t_20 is consistent with 1/\sqrt{2}, which follows from
parity conservation and Bose symmetry. The much slower momentum variation
observed for the reaction amplitude, as compared to that for the analogous
pd->eta 3He case, suggests strongly the existence of a quasi-bound state in the
eta-4He system and optical model fits indicate that this probably also the case
for eta-3He.Comment: LaTeX, uses elsart.sty, 10 pages, 3 Postscript figures, Submitted to
Physics Letters
Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude
We report on a measurement of the asymmetry in the scattering of transversely
polarized electrons off unpolarized protons, A, at two Q values of
\qsquaredaveragedlow (GeV/c) and \qsquaredaveragedhighII (GeV/c) and a
scattering angle of . The measured transverse
asymmetries are A(Q = \qsquaredaveragedlow (GeV/c)) =
(\experimentalasymmetry alulowcorr \statisticalerrorlow
\combinedsyspolerrorlowalucor) 10 and
A(Q = \qsquaredaveragedhighII (GeV/c)) = (\experimentalasymme
tryaluhighcorr \statisticalerrorhigh
\combinedsyspolerrorhighalucor) 10. The first
errors denotes the statistical error and the second the systematic
uncertainties. A arises from the imaginary part of the two-photon
exchange amplitude and is zero in the one-photon exchange approximation. From
comparison with theoretical estimates of A we conclude that
N-intermediate states give a substantial contribution to the imaginary
part of the two-photon amplitude. The contribution from the ground state proton
to the imaginary part of the two-photon exchange can be neglected. There is no
obvious reason why this should be different for the real part of the two-photon
amplitude, which enters into the radiative corrections for the Rosenbluth
separation measurements of the electric form factor of the proton.Comment: 4 figures, submitted to PRL on Oct.
Microscopic description of Coulomb and nuclear excitation of multiphonon states in Ca + Ca collisions
We calculate the inelastic scattering cross sections to populate one- and
two-phonon states in heavy ion collisions with both Coulomb and nuclear
excitations. Starting from a microscopic approach based on RPA, we go beyond it
in order to treat anharmonicities and non-linear terms in the exciting field.
These anharmonicities and non-linearities are shown to have important effects
on the cross sections both in the low energy part of the spectrum and in the
energy region of the Double Giant Quadrupole Resonance. By properly introducing
an optical potential the inelastic cross section is calculated semiclassically
by integrating the excitation probability over all impact parameters. A
satisfactory agreement with the experimental results is obtained.Comment: 20 pages, 2 figures, revtex, to be published in Phys. Rev.
The importance of the nucleon-nucleon correlations for the eta alpha S-wave scattering length, and the pi-eta mixing angle in the low-energy eta alpha scattering length model
Using the new set of dd --> eta alpha near threshold experimental data, the
estimate of the importance of the nucleon-nucleon correlations for the eta
alpha S-wave scattering length in the multiple scattering theory is obtained
using the low-energy scattering length model. The contribution turns out to be
much bigger then previously believed. The pi-eta mixing angle is extracted
using the experimental data on the dd --> eta alpha and dd --> pi alpha
processes. The model is dominated by the subthreshold extrapolation recipe for
the eta alpha scattering amplitudes. When the recipe is chosen the model is
completely insensitive to the eta alpha parameters for the subthreshold value
of the eta cm momentum of p_{eta}^2 = -(0.46)^2 fm^{-2}. Provided that the
subthreshold extrapolation recipe is correct, a good estimate of the pi-eta
mixing angle is obtained, if the experimental cross sections for the dd --> pi
alpha reaction at the corresponding deuteron input energy are taken from the
literature.Comment: 8 pages, 2 figure
He Structure and Mechanisms of He Backward Elastic Scattering
The mechanism of He backward elastic scattering is studied.
It is found that the triangle diagrams with the subprocesses He,
He and He, where and
denote the singlet deuteron and diproton pair in the state,
respectively, dominate in the cross section at 0.3-0.8 GeV, and their
contribution is comparable with that for a sequential transfer of a pair
at 1-1.5 GeV.
The contribution of the , estimated on the basis of the spectator
mechanism of the He reaction, increases the HeHe cross section by one order of magnitude as compared to the
contribution of the deuteron alone.
Effects of the initial and final states interaction are taken into account.Comment: 17 pages, Latex, 4 postscript figures, expanded version, accepted by
Physical Review
Evidence for Strange Quark Contributions to the Nucleon's Form Factors at = 0.108 (GeV/c)
We report on a measurement of the parity violating asymmetry in the elastic
scattering of polarized electrons off unpolarized protons with the A4 apparatus
at MAMI in Mainz at a four momentum transfer value of = \Qsquare
(GeV/c) and at a forward electron scattering angle of 30. The measured asymmetry is = (\Aphys
\Deltastat \Deltasyst) 10. The
expectation from the Standard Model assuming no strangeness contribution to the
vector current is A = (\Azero \DeltaAzero) 10. We
have improved the statistical accuracy by a factor of 3 as compared to our
previous measurements at a higher . We have extracted the strangeness
contribution to the electromagnetic form factors from our data to be +
\FakGMs = \GEsGMs \DeltaGEsGMs at = \Qsquare (GeV/c).
As in our previous measurement at higher momentum transfer for + 0.230
, we again find the value for + \FakGMs to be positive,
this time at an improved significance level of 2 .Comment: 4 pages, 3 figure
Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2
We report on a measurement of the parity-violating asymmetry in the
scattering of longitudinally polarized electrons on unpolarized protons at a
of 0.230 (GeV/c)^2 and a scattering angle of \theta_e = 30^o - 40^o.
Using a large acceptance fast PbF_2 calorimeter with a solid angle of
\Delta\Omega = 0.62 sr the A4 experiment is the first parity violation
experiment to count individual scattering events. The measured asymmetry is
A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\rm sys}) 10^{-6}. The Standard Model
expectation assuming no strangeness contributions to the vector form factors is
. The difference is a direct measurement of the
strangeness contribution to the vector form factors of the proton. The
extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2
= 0.032 +- 0.028.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Letters on Dec 11, 200
- …