30 research outputs found

    Exocyst-Dependent Membrane Addition Is Required for Anaphase Cell Elongation and Cytokinesis in <i>Drosophila</i>

    No full text
    <div><p>Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division <i>in vivo</i>, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that <i>onion rings (onr)</i> and <i>funnel cakes (fun)</i> encode the <i>Drosophila</i> homologs of the Exo84 and Sec8 exocyst subunits, respectively. In <i>onr</i> and <i>fun</i> mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus <i>onr</i> and <i>fun</i> mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that <i>onr</i> and <i>fun</i> mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in <i>onr</i> and <i>fun</i> spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression.</p></div

    <i>onr</i> and <i>fun</i> mutations interact with mutations in <i>Rab11</i>.

    No full text
    <p>(A) Frequencies of early spermatids containing 2, 4 or more than 4 nuclei per nebenkern in testes from either <i>Rab11</i><sup><i>93Bi</i></sup><i>/Rab11</i><sup><i>93Bi</i></sup><i>(Rab11) or fun</i><sup><i>z1010</i></sup><i>Rab11</i><sup><i>93Bi</i></sup><i>/+ Rab11</i><sup><i>93Bi</i></sup><i>(fun Rab11/Rab11)</i> mutant males. (B) Frequencies of early spermatids containing multiple nuclei (2, 4 or more than 4 nuclei) per nebenkern in testes from either <i>Rab11</i><sup><i>93Bi</i></sup>/<i>Rab11</i><sup><i>E(To)3</i></sup><i>(Rab11)</i>, <i>fun</i><sup><i>z1010</i></sup><i>/fun</i><sup><i>z1010</i></sup><i>(fun)</i>, or <i>fun</i><sup><i>z1010</i></sup><i>Rab11</i><sup><i>93Bi</i></sup><i>fun</i><sup><i>z1010</i></sup><i>Rab11</i><sup><i>E(To)3</i></sup><i>(fun Rab11)</i> mutant males. (C) Co-IP of HA-Sec8 with GFP-Exo84. Protein extracts from testes expressing either HA-Sec8 and GFP-Exo84 or HA-Sec8 alone were immunoprecipitated with anti-GFP (i.e., GFP-trap beads) and immunoblotted for either GFP, HA or Rab11. (D) Co-IP of Sec5 with YFP-Rab11. Protein extracts from testes expressing either wild-type YFP-Rab11 (wt), YFP-Rab11<sup>Q70L</sup> (Q70L) or YFP-Rab11<sup>S25N</sup> (S25N) were immunoprecipitated for YFP (using GFP-trap beads) and blotted for either YFP or Sec5.</p

    Įmonių pasirengimo įgyvendinti inovacijų strategiją vertinimo sistema

    No full text
    Development and implementation of innovation strategy requires increased attention of the businesses. Rather than the business acceding to its implementation needs to know the current status of work in innovation and the key elements that will be crucial in this process. The aim of this paper is based on the analysis of literary sources and carried out research on the proposal of the evaluation system of preparedness of businesses for implementation of an innovation strategy. The proposal describes different levels of preparedness, the basic evaluation methodology and evaluation procedure. The paper brings the main results of the authors who conducted research on a sample of 462 respondents to show the current situation in the Slovak businesses in the use of innovation strategy. A survey used the following methods: comparative method, qualitative evaluation, and method of structured and semi-structured interviews, observation methods, method of document analysis (a method of content analysis) and the questionnaire method

    Defective cytokinetic ring ingression in <i>fun</i> and <i>onr</i> mutant cells.

    No full text
    <p>(A) Selected still frames from supplemental <b><a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005632#pgen.1005632.s005" target="_blank">S1</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005632#pgen.1005632.s006" target="_blank">S2</a></b>and <b><a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005632#pgen.1005632.s007" target="_blank">S3</a></b>Movies. Dividing spermatocytes expressing the regulatory light chain of non-muscle myosin II, Sqh-GFP, were imaged starting from the beginning of anaphase. Numbers at the bottom of each frame indicate minutes from the beginning of imaging. Note that the Sqh-GFP ring undergoes minimal constriction (<i>fun</i>) or fails to constrict (<i>onr</i>) in mutant cells. Scale bar, 10ÎĽm. (B) Dynamics of cleavage furrows in <i>fun</i> and <i>onr</i> mutants. Furrow diameters (relative to the diameter at t = 0) in dividing spermatocytes from wild type, <i>fun</i><sup><i>z1010</i></sup><i>/Df(3R)Exel6145</i> (<i>fun</i>) and <i>onr</i><sup><i>z4840</i></sup><i>/Df(3R)Espl1 (onr)</i> males expressing Sqh-GFP and undergoing ana-telophase were plotted over time. (C) Furrow diameters (relative to the diameter at time = 0) were plotted at 5-minute intervals. Furrow diameters were measured in movies from dividing spermatocytes expressing Sqh-GFP and undergoing ana-telophases (n = 9 wild type, n = 8 <i>fun</i> and n = 8 <i>onr)</i>. Error bars indicate standard deviations. *p = 0.0035, **p = 0.0008;***p = 0.0001, significantly different from control in the Student t test.</p

    Defects in morphology and ultrastructure of parafusorial membranes and Golgi bodies in <i>fun</i> and <i>onr</i> mutant cells.

    No full text
    <p>Transmission electron micrographs showing parafusorial membranes (A-F), astral membranes (G-I), and Golgi bodies (J-L) in <i>fun</i> and <i>onr</i> mutant spermatocytes. Parafusorial and astral membranes (arrows) are enlarged, fragmented and vacuolated in <i>fun</i><sup><i>z1010</i></sup>/<i>Df(3R)Exel6145</i> (B, E, H) and <i>onr</i><sup><i>z4840</i></sup><i>/Df(3R)Espl3</i> (C, F, I) dividing spermatocytes. (D, E, F) panels are magnified images of areas surrounded by white squares in (A, B, C). (H, I) panels are magnified images of areas surrounded by black squares in (B, C). Golgi bodies (asterisks) show vacuolated regions in <i>fun</i> (K) and <i>onr</i> (L) mutant spermatocytes. Golgi bodies surrounded by white squares in (J-L) are magnified in insets. Scale bars are 2 ÎĽm (A-C, J, K) or 500 nm (D-I, L).</p
    corecore