13 research outputs found

    Nonlocal elastic compliance for soft solids: theory, simulations, and experiments

    Get PDF
    The nonlocal elastic response function is crucial for understanding many properties of soft solids. This may be obtained by measuring strain-strain autocorrelation functions. We use computer simulations as well as video microscopy data of superparamagnetic colloids to obtain these correlations for two-dimensional triangular solids. Elastic constants and elastic correlation lengths are extracted by analyzing the correlation functions. We show that to explain our observations displacement fluctuations in a soft solid need to contain affine (strain) as well as nonaffine components

    Coarse-graining microscopic strains in a harmonic, two-dimensional solid and its implications for elasticity: non-local susceptibilities and non-affine noise

    Full text link
    In soft matter systems the local displacement field can be accessed directly by video microscopy enabling one to compute local strain fields and hence the elastic moduli using a coarse-graining procedure. We study this process for a simple triangular lattice of particles connected by harmonic springs in two-dimensions. Coarse-graining local strains obtained from particle configurations in a Monte Carlo simulation generates non-trivial, non-local strain correlations (susceptibilities), which may be understood within a generalized, Landau type elastic Hamiltonian containing up to quartic terms in strain gradients (K. Franzrahe et al., Phys. Rev. E 78, 026106 (2008)). In order to demonstrate the versatility of the analysis of these correlations and to make our calculations directly relevant for experiments on colloidal solids, we systematically study various parameters such as the choice of statistical ensemble, presence of external pressure and boundary conditions. We show that special care needs to be taken for an accurate application of our results to actual experiments, where the analyzed area is embedded within a larger system, to which it is mechanically coupled. Apart from the smooth, affine strain fields, the coarse-graining procedure also gives rise to a noise field made up of non-affine displacements. Several properties of this noise field may be rationalized for the harmonic solid using a simple "cell model" calculation. Furthermore the scaling behavior of the probability distribution of the noise field is studied and a master curve is obtained.Comment: 16 pages, 12 figure

    Constitutive activation of STAT3 and STAT5 is induced by leukemic fusion proteins with protein tyrosine kinase activity and is sufficient for transformation of hematopoitic precursor cells.

    No full text
    Objective Signal transducers and activators of transcription (STAT) factors are critical mediators in the signal transduction of cytokine receptors. In hematopoietic and epithelial cells, activation of STAT 1 induces apoptosis and growth arrest, whereas activation of STAT3 and STAT5 transduces growth-promoting signals. We and others have previously described a high expression and constitutive activation of STAT1, 3, and 5 in AML blasts. In this report we focused on the mechanisms and also the biologic relevance of STAT activation in AML. Results. We report here that a constitutive STAT activation can be detected in up to 95% of primary AML blasts. In vitro, neither induction of the leukemic fusion protein PML-RARα in U937 cells nor expression of transforming ras-mutants, but several leukemic protein tyrosine kinase (PTK), strongly induced activation of STAT3 and 5. Stable transfection of BA/F3 cells with TEL-JAK2, TEL-ABL, and BCR-ABL resulted in IL-3 independent growth and strong activation of STAT3 and STAT5 by TEL-JAK2 and TEL-ABL, but not by BCR-ABL. In addition, expression of constitutive active mutants of STAT3 and STAT5 alone were sufficient to transform BA/F3 cells. Conclusions. These results show that STAT3 and STAT5 are activated in the majority of primary AML blasts and are major targets of leukemic fusion proteins with PTK activity. However, the STAT activation pattern by leukemic PTKs differed signficantly and might reflect their transforming potential in acute (TEL-JAK2 and TEL-ABL) and chronic leukemias (p210BCR-ABL). The transforming capacity of constitutively activated STAT3 and STAT5 mutants strongly supports their fundamental role in the process of malignant transformation in hematopoietic cells

    Field-induced ordering phenomena and non-local elastic compliance in two-dimensional colloidal crystals

    No full text
    Ordering phenomena in colloidal dispersions exposed to external one-dimensional, periodic fields or under confinement are studied systematically by Monte Carlo computer simulations. Such systems are useful models for the study of monolayers on a substrate. We find that the interaction with a substrate potential completely changes the miscibility of a binary, hard disc mixture at low external field amplitudes. The underlying ordering mechanisms leading to this laser-induced de-mixing differ, depending on which components interact with the substrate potential. Generic effects of confinement on crystalline order in two dimensions are studied in a model system of point particles interacting via a potential r−12. The state of the system (a strip of width D) depends very sensitively on the precise boundary conditions at the two confining walls. Commensurate, corrugated boundary conditions enhance both orientational order and positional order. In contrast, smooth repulsive boundaries enhance only the orientational order and destroy positional (quasi-)long range order. As external fields have a strong impact on the elastic behaviour of colloidal crystals there is a need to analyse the elastic response in such systems for the field-free case first. To this aim we study the strain-strain correlation functions in a two-dimensional crystal formed by super-paramagnetic colloids, as monitored by standard video microscopy

    Numerical Investigations of Complex Nano-Systems

    Get PDF
    Quantum effects, structures and phase transitions in Nano-systems have been studied. An overview is given on the results of our computations on atomic wires, clusters, pore condensates, Bose fluids, elastic properties of model colloids and model colloids in external fields

    Effects of boundaries on structure formation in low-dimensional colloid model systems near the liquid-solid-transition in equilibrium and in external fields and under shear

    Get PDF
    A brief review focusing on low-dimensional colloidal model systems is given describing both simulation studies and complementary experiments, elucidating the interplay between phase behavior, geometric structures, and transport phenomena. These studies address the response of these very soft colloidal systems to perturbations such as uniform or uniaxial compression, laser fields, randomly quenched disorder, and shear deformation caused by moving boundaries. Binary hard-disk mixtures are studied by Monte Carlo simulation, to investigate ordering on surfaces or in monolayers, modeling the effect of a substrate by an external potential. By weak external laser fields the miscibility of the mixture can be controlled, and the underlying mechanism (laser-induced demixing) is clarified. The stability of various space-filling structures is discussed only for the case where no laser fields are present.Hard spheres interacting with repulsive screened Coulomb or dipolar interaction confined in 2D and 3D narrow constrictions are investigated by Brownian Dynamics simulation. With respect to the structural behavior, it is found that layers or planes throughout the microchannel are formed. The arrangement of the particles is disturbed by diffusion, and can also be modified by an external driving force causing a density gradient along the channel. Then the number of layers or planes gets reduced, adjusting to the density gradient, and this self-organized change of order also shows up in the particle velocities. The experimental work that is reviewed here addresses dipolar colloidal particles confined by gravity on a solid substrate on which a set of pinning sites has been randomly distributed. The dynamics of the system is studied by tracking the trajectories of individual particles, and it is found that the mean square displacements of particles that are nearest neighbors of pinned particles are strongly affected by these defects. The influence of the pinning sites on the order and microscopic mechanism of phase transitions in two dimensions is investigated
    corecore