
John von Neumann Institute for Computing

Soft Matter- and Nano-Systems:
Computer Simulations

F. Bürzle, K. Franzrahe, P. Henseler, Ch. Schieback,
M. Dreher, J. Neder, W. Quester, D. Mutter,

M. Schach, P. Nielaba

published in

NIC Symposium 2008,
G. Münster, D. Wolf, M. Kremer (Editors),
John von Neumann Institute for Computing, Jülich,
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Soft matter systems have been investigated by Monte Carlo and Brownian Dynamics simula-
tions. In particular the behaviour of two dimensional binary hard disk mixtures in external
periodic potentials has been studied as well as the transport of colloids in micro-channels and
the features of proteins in lipid bilayers. Ni nanocontactshave been analyzed by Molecular
Dynamics simulations with respect to their conductance andstructural properties under stretch-
ing. The properties of Si clusters in external fields have been computed by density functional
methods, and static and dynamic properties of magnetic model systems by the Landau-Lifshitz-
Gilbert equation. In the following sections an overview will be given on our recent results.

1 Two-Dimensional Model Colloids in External Periodic Fields

In monolayers on crystalline surfaces one can observe an intricate competition between
effects due to the interaction of components within the layer and those with the underlying
substrate.

Such complicated experimental systems can be modelled by two-dimensional colloidal
systems. The interactions within the monolayer can be altered by changing the interaction
potential of the colloids, while the shape and strength of the substrate potential can be
modelled by external light fields. The advantage of the modelsystem is, that via laser
scanning microscopy direct access to the particle configurations is given. In this way it is
possible to gain insight in the relative importance of the various possible physical processes
that occur. From the theoretical point of view, even the relatively simple combination of
a monodisperse system in a one-dimensional, spatially periodic light field shows a highly
non-trivial phase behaviour as the amplitude of the external field is raised: Laser Induced
Freezing (LIF) and Laser Induced Melting (LIM).

The interesting LIF- and LIM- effects have been studied in the HPC project by Monte
Carlo simulations in two dimensions using commensurate1, 2 and incommensurate poten-
tials. In addition, interesting ordering phenomena of two-dimensional colloidal crystals
confined in strips of finite widths have been analysed by MC simulations3, 4.

In particular we explored5 a hard disk system with commensurability ratiop =√
3as/(2λ) = 2, whereas is the mean distance between the disks andλ the period of the

external potential. Three phases, the modulate liquid, thelocked smectic and the locked
floating solid have been observed, in agreement with other experimental6 and analytical7

studies. Various statistical quantities like order parameters, their cumulants and response
functions, have been used to obtain a phase diagram for the transitions between these three
phases.

For our analysis, we consider a system of hard disks with diameterσ. This system is
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Figure 1. Phase diagram in theρ∗/V ∗
0 plane. Transitions points have been obtained by considering order pa-

rameter cumulant intersection points.

subjected to an external potential

V (x, y) = V0 sin

(
2π

λ
x

)
(1)

Our system is characterized by the reduced density̺∗ = ̺σ2 and the reduced potential
strengthV ∗

0 = V0/(kBT ), wherekB is the Boltzmann constant andT the temperature.
For simplification,σ was set to unity in our simulation.

The resulting phase diagram shown in Fig. 1 was obtained by using the data from
the cumulant intersection points. As the most important result, we see that the melting
curves for both order parameters show a distinct remelting behaviour at higherV ∗

0 , as
was expected by the theory of Radzihovskyet al.7. The melting curve from LFS to LSm
(open circles) resembles those obtained by Streppet al.1 for p = 1 quite well. The other
transition curve from ML to LSm (closed circles) shows that here the global minimum of
the curve is slightly shifted to higher potential strengths. Also the minimum is located at
considerable lower densities. Finally, it must be emphasized that atV ∗

0 → 0, the different
melting curves collapse into one single curve, as is expected for physical reasons.

In the studies of bi-disperse colloidal crystals our emphasis lies on the analysis of
their structural and elastic properties. Monte Carlo simulations are an effective means for
such analysis. We are interested in the dependence of these properties on the mixing ratio
and size ratio of the components8. Monte Carlo simulations for hard disk mixtures with
different diameter ratiosσB/σA have been performed in the NPT- and NVT- ensemble in
order to analyze the structural properties and phase transition parameters. Another point
of interest is the phase behaviour of such systems in external, periodic light fields9. A
bi-disperse hard disk mixture (mixing ratio50% and diameter ratioσB/σA = 0.414) was
exposed to an one dimensional, spatially periodic externallight field. The wavelength of
the external field was chosen to be commensurate to the squarelattice, which yields the
highest packing fraction for the given mixture. The commensurability ratio was set to
p = 2. In these studies one has to distinguish between three cases: (I) only the smaller
component interacts with the external field, (II) both components interact with the field and
(III) only the larger component interacts with the field.
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Figure 2. The̺ ∗ − V ∗
0 plane of the phase diagram of an equimolar binary mixture (σB/σA = 0.414) for the

case, when only the smaller component interacts with the external light field.

Figure 2 shows9 the phase diagram obtained for case (I). It was calculated bylowering
the dimensionless number density̺∗ = ̺σ2

A and taking a commensurate path through
phase space, meaning the wavelength of the external fieldλ = 1/(

√
2̺∗) changes with̺ ∗.

Part of the phase diagram was obtained by raising the potential strengthV ∗
0 at constant̺ ∗.

Simulations carried out in an incommensurate setting, i.e.λ is kept constant independent
of ̺∗, intersect the phase diagram consistently.

At low external fields (V0 ≤ 1.5) we observe a laser induced coexistence of a triangular
lattice of the larger component with a smaller component enriched binary fluid. In the field
free case the system does not expose phase separation. This phase separation is driven by
the attempts of the smaller components to form chains along the minima of the external
field. Case (II) and (III) also show a laser induced de-mixingat low potential strengths.
In these cases the larger component interacts directly withthe external field. The phase
separation is now also driven by the attempt of the larger component itself to align with
the minima of the external field. The resulting coexisting monodisperse solid is a rhombic,
commensurate lattice.

At higher external fields as shown9 in figure 2 case(I), i.e. only the smaller component
interacts with the external field, exhibits a laser induced freezing transition into the the
commensurateS1(AB) square lattice. Depending on the overall density̺∗ theS1(AB)
locked floating solid is either in the one phase regime or coexists with an equimolar bi-
nary fluid. These two regimes are separated by a fissuring region, in which the smaller
component is free to move perpendicular to the minima of the external field.

2 Transport of Colloids in Micro-Channels

We conducted Brownian dynamics (BD) simulations of a two-dimensional microchannel10

setup in order to investigate the flow behaviour of the colloidal particles within the chan-
nel systematically for various parameter values of constant driving force, overall particle
density, and channel width. The pair interactionV (r) = (µ0/4π)M2/r3 (M is the dipole
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Figure 3. (a) Video microscopy snapshot of colloidal particles moving along the lithographically defined channel.
(b) Simulation snapshots for a channel (692 × 60µm, Γ ≈ 2.5) with ideal hard walls (573.3 × 45µm, Γ =
115), (c) the same as in (b) with the particles at the walls (marked green) kept fixed (573.3 × 45µm, Γ = 902).
The blue rectangles mark the layer transition region.

moment) is purely repulsive and can be characterized by the dimensionless interaction
strengthΓ = µ0M

2ρ2/3/(4πkBT ).
Particles are confined to the channel by ideal elastic hard walls in y-direction and at

x = 0 (channel entrance). Also we performed simulations with theparticles at the wall
kept fixed. The channel end is realized as an open boundary. Tokeep the overall number
density in the channel fixed, every time a particle leaves theend of the channel a new
particle is inserted at a random position (avoiding particle overlaps) within the first 10%
of the channel, acting as a reservoir. A cutoff of10σ was used along with a Verlet next
neighbour list11. Checks of particle overlaps are included in the simulation, but for all
ordered systems we never found two overlapping particles.

A typical snapshot from the experiment10 of the particles moving along the channel is
shown in Fig. 3(a). Similar snapshots we get from simulations10 with co-moving (Fig. 3(b))
and fixed boundary particles (Fig. 3(c)), i.e., the velocityis kept to zero for the particles
at the channel wall. In most regions of the channel the particles are placed in a quasi-
crystalline order. This behaviour is due to the strength of the particle interactions caused
by the external magnetic field (highΓ-values), which leads to quasi-crystalline behaviour
in unbounded systems as well. The formation of this order naturally gives rise to the
formation of layers in the motion of the particles along the channel. A similar layering
phenomenon has been observed in channels under equilibriumcondition12. Additionally
to this layer formation we observe, both in experiment and insimulation, a decrease of the
number of layers in the direction of motion. In between both regions therefore a region ex-
ists in which the particles cannot be well-ordered. This region is called the layer-reduction
zone. In Fig. 3 these regions have been marked.

The reduction of the number of layers originates from a density gradient along the
channel. The local particle density inside the channel is shown in Fig. 4(a) and (b) together
with the particle separations inx- andy-directions. In the experiment (Fig. 4(a)) the density
decreases monotonically along the direction of the motion of the particles by about 20%.
The average density in the channel shows fluctuations on the order of 10% as a function
of time. The total increase in density, however, is less than3% during the total time of
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Figure 4. Local lattice constantsdx anddy and local particle density (a) in the experiment and (b) in the BD
simulation. The results are obtained for the systems of Fig.3(a) and (b) respectively. (c) Potential energies per
particle of different layer configurations as a function of the particle density. The dots mark the perfect triangular
lattices for 5, 6 and 7 layers. Also shown are parts of the configurations with 7 and 6 layers at the intersection
point. (d) Plots of the layer order parameter for the configuration snapshot of Fig. 3(b).

the experiment. We therefore argue that the density gradient is formed in a quasi-static
situation. This argument is confirmed by results of BD simulations (Fig. 4(b)), where the
corresponding decrease of the particle density is observed.

3 Conductance and Structural Properties of Ni Nanocontacts

During the last years a lot of attention has been devoted to the analysis of contacts of
magnetic materials. In these nanowires the spin degeneracyis lifted, which can potentially
lead to interesting spin-related phenomena in the transport properties.

Here we address the issue of the conductance quantization and the spin polarization of
the current of Ni contacts. We have combined classical molecular dynamics simulations
of the breaking of nanocontacts with conductance calculations based on a tight-binding
model.13, 14 For Ni we have applied our method to a Hamiltonian with spin-dependent
matrix elements.15

We analyzed the evolution of the conductance during the formation of a Ni dimer struc-
ture, which is the most common geometry in the last stages of the breaking process. In
addition to the evolution of the conductance and transmission eigenchannels for both spin
components separately, we computed the MCS radius, the strain force, and the spin polar-
ization of the current, which is defined asP = (G↑−G↓)/(G↑ +G↓)× 100%, whereGσ

is the conductance of the spin componentσ. Here, spin up (σ =↑) means majority spins
and spin down (σ =↓) minority spins. In the last stages of the stretching the conductance
for the majority spins lies below1.2e2/h and is dominated by a single channel, while for
the minority spin there are still up to four open channels andthe conductance is close to
2e2/h, adding up to a total conductance of around1.2–1.6G0.

249



-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.6  1.8  2  2.2  2.4  2.6  2.8  3  3.2

bi
nd

in
g 

en
er

gy
 / 

eV

distance R/�°A

Center
Edge
Atom

-1

 0

 1

 2

 3

 4

 1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

po
te

nt
ia

l e
ne

rg
y 

/ e
V

distance R/�°A

k=0
k=2.00
k=3.00
k=3.50

Figure 5. Left: Binding energy of Si atoms as function of distance over certain sites of a graphite surface Right:
Potential energy for two Si4 clusters as function of distance in an external parabolic potential.

For ferromagnetic Ni, we have shown that the contacts behaveas a mixture of a noble
metal (such as Ag) and a transition metal (such as Pt). While the4s orbitals play the main
role for the transport of the majority-spin electrons, the conduction of the minority-spin
electrons is controlled by the partially occupied3d orbitals. This follows from the position
of the Fermi energy, which lies in thes band for the majority spins and in thed bands
for the minority spins. Our results indicate the absence of any conductance quantization,
and show how the spin polarization of the current evolves from negative values in thick
contacts to even positive values in the tunneling regime after rupture of the contact.

4 Sin Clusters, Magnetic Model Systems and Membranes under
Tension

We computed the properties of selected Sin clusters approaching each other and the effect
of external fields and surfaces17, 18by DFT methods19.

One example shown here is the approach of Si-atoms to a graphite surface. The re-
sulting binding energy as function of distance over certainsites16 is shown in Fig. 5. It
follows that the site above the C-C bonds is energetically preferred. Another example18 is
the effect of an external parabolic potential,V (x, y, z) = k2y2 on the potential energy of
two Si4 clusters as a function of distance, s. Fig. 5. Two nearest atoms of the two clusters
are fixed at a distanceR, the other atoms are allowed to move freely. For increasingk
values the potential energy develops a fusion barrier at a distance of about 3̊A.

Using the Heisenberg Hamiltonian and the Landau-Lifshitz-Gilbert equation interest-
ing insight into the behaviour of domain walls in confined geometry at finite temperature
has been computed20–22.

The dynamics of the spin reversal processes in systems with moments attached to caps
of (colloidal) spheres have been computed22 for different system sizes and external mag-
netic fields. Fig. 6 shows the hysteresis effect of external magnetic fields at angleϑ relative
to the x-axis.

Lipid bilayers and incorporated proteins form biological membranes. These barriers
define the inside and the outside of a cell and are indispensable for live. Usually the
microscopic surface tension of membranes is small or vanishes altogether. One aim of
our work23 is to study the effect of an applied tension to a model bilayer, unsing the lipid
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Figure 6. Left: Sketch of the geometry; Right: Hysteresis for different anglesϑ relative to the x-axis. The caps
have a diameter of 48 nm and a height of 12 nm.

Figure 7. Left: Snapshot of a double bilayer configuration; Right: Tether consisting of 4,800 lipids

model of Ref.24, 26. Does this tension cause a change in the behaviour of incorporated
model proteins, e.g. lead to an increasing lipid mediated attraction or repulsion between
two proteins?

Other points of interest in our project are the examination of membrane multi layers
(Fig. 7) and tethers (Fig. 7) within and without an applied tension, respectively. These
configurations23 require high computing capacities due to the system size. The shown
tether, e. g., consists of 4800 lipids and more than 90,000 solvent particles. The program
has been parallelized and technical details about that can be found in Ref.25.
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