26 research outputs found

    Structure and Anti-TB Activity of Trachylobanes from the Liverwort Jungermannia exsertifolia ssp. cordifolia

    Get PDF
    In the critical search for new antituberculosis lead compounds, bryophytes represent a largely untapped resource of chemically diverse structures. From the liverwort Jungermannia exsertifolia subsp. cordifolia, 11 new trachylobane diterpene derivatives, as well as three known compounds, were isolated. Their structures were elucidated by spectroscopic means, and full 1H NMR spin analysis of one model compound confirmed the relative configurational assignments of the congeners. Four of the isolates exhibited noticeable activity against virulent Mycobacterium tuberculosis H37Rv with minimal inhibitory concentrations of 61−24 μg/mL. This finding suggests that bryophytes in general and trachylobanes in particular deserve further attention in the search for new antimycobacterial leads

    A lanostane aldehyde from Momordica charantia

    Get PDF
    A new lanostane aldehyde, charantal (1), was isolated from the ethanolic leaf extract of Momordica charantia together with the known compound, 2,4-bis(2-phenylpropan-2-yl)phenol (2). The structure of compound 1 was elucidated by extensive 1D and 2D NMR and MS experiments. Compound 2 displayed a moderately strong antitubercular activity against Mycobacterium tuberculosis H37Rv (MIC = 14 μg/mL) according to the MABA susceptibility assay

    Callophycoic acids and callophycols from the Fijian red alga Callophycus serratus

    Get PDF
    Callophycoic acids A−H (1−8) and callophycols A and B (9 and 10) were isolated from extracts of the Fijian red alga Callophycus serratus, and identified by NMR, X-ray, and mass spectral analyses. These natural products represent four novel carbon skeletons, providing the first examples of diterpene−benzoic acids and diterpene−phenols in macroalgae. Compounds 1−10 exhibited antibacterial, antimalarial, and anticancer activity, although they are less bioactive than diterpene-benzoate macrolides previously isolated from this red alga

    Cytotoxic Constituents from Lobaria scrobiculata and a Comparison of Two Bioassays for Their Evaluation

    Get PDF
    Lichens are resilient organisms, known for their unique profiles of secondary metabolites and for exhibiting antioxidative, antibacterial, and cytotoxic effects. Analyzing the cytotoxic potential of Lobaria scrobiculata, a bioassay-guided fractionation strategy yielded seven known metabolites, with two of these compounds, 2 and 3, exhibiting cytotoxicity against HL-60 cells. In order to verify the potential impact of degradation on observed bioactivity, a purity and stability evaluation was conducted. The consistency of results obtained by the water-soluble tetrazolium salt-1 assay and trypan blue cytotoxicity assay was evaluated for selected compounds

    In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide

    Get PDF
    Abstract: Objectives: To evaluate a novel series of quinoxaline 1,4-di-N-oxides for in vitro activity against Mycobacterium tuberculosis and for efficacy in a mouse model of tuberculosis (TB). Methods: Ketone and amide derivatives of quinoxaline 1,4-di-N-oxide were evaluated in in vitro and in vivo tests including: (i) activity against M. tuberculosis resistant to currently used antitubercular drugs including multidrug-resistant strains (MDR-TB resistant to isoniazid and rifampicin); (ii) activity against non-replicating persistent (NRP) bacteria; (iii) MBC; (iv) maximum tolerated dose, oral bioavailability and in vivo efficacy in mice; and (v) potential for cross-resistance with another bioreduced drug, PA-824. Results: Ten compounds were tested on single drug-resistant M. tuberculosis. In general, all compounds were active with ratios of MICs against resistant and non-resistant strains of <= 4.00. One compound, 5, was orally active in a murine model of TB, bactericidal, active against NRP bacteria and active on MDR-TB and poly drug-resistant clinical isolates (resistant to 3-5 antitubercular drugs). Conclusions: Quinoxaline 1,4-di-N-oxides represent a new class of orally active antitubercular drugs. They are likely bioreduced to an active metabolite, but the pathway of bacterial activation was different from PA-824, a bioreducible nitroimidazole in clinical trials. Compound 5 was bactericidal and active on NRP organisms indicating that activation occurred in both growing and non-replicating bacteria leading to cell death. The presence of NRP bacteria is believed to be a major factor responsible for the prolonged nature of antitubercular therapy. If the bactericidal activity and activity on non-replicating bacteria in vitro translate to in vivo conditions, quinoxaline 1,4-di-N-oxides may offer a path to shortened therapy

    Efficacy of quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives in experimental tuberculosis

    Get PDF
    This study extends earlier reports regarding the in vitro efficacies of the 1,4-di-N-oxide quinoxaline derivatives against Mycobacterium tuberculosis and has led to the discovery of a derivative with in vivo efficacy in the mouse model of tuberculosis. Quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives were tested in vitro against a broad panel of single-drug-resistant M. tuberculosis strains. The susceptibilities of these strains to some compounds were comparable to those of strain H(37)Rv, as indicated by the ratios of MICs for resistant and nonresistant strains, supporting the premise that 1,4-di-N-oxide quinoxaline derivatives have a novel mode of action unrelated to those of the currently used antitubercular drugs. Specific derivatives were further evaluated in a series of in vivo assays, including evaluations of the maximum tolerated doses, the levels of oral bioavailability, and the efficacies in a low-dose aerosol model of tuberculosis in mice. One compound, ethyl 7-chloro-3-methylquinoxaline-2-carboxylate 1,4-dioxide, was found to be (i) active in reducing CFU counts in both the lungs and spleens of infected mice following oral administration, (ii) active against PA-824-resistant Mycobacterium bovis, indicating that the pathway of bioreduction/activation is different from that of PA-824 (a bioreduced nitroimidazole that is in clinical trials), and (iii) very active against nonreplicating bacteria adapted to low-oxygen conditions. These data indicate that 1,4-di-N-oxide quinoxalines hold promise for the treatment of tuberculosis

    Design, Synthesis and Characterization of N-oxide-containing Heterocycles with In vivo Sterilizing Antitubercular Activity

    Get PDF
    Tuberculosis, caused by the Mycobacterium tuberculosis (Mtb), is the infectious disease responsible for the highest number of deaths worldwide. Herein, 22 new N-oxide- containing compounds were synthesized followed by in vitro and in vivo evaluation of their antitubercular potential against Mtb. Compound 8 was found to be the most promising compound, with MIC90 values of 1.10 and 6.62 μM against active and non- replicating Mtb, respectively. Additionally, we carried out in vivo experiments to confirm the safety and efficacy of compound 8; the compound was found to be orally bioavailable and highly effective leading to the reduction of the number of Mtb to undetected levels in a mouse model of infection. Microarray-based initial studies on the mechanism of action suggest that compound 8 blocks the process of translation. Altogether, these results indicated benzofuroxan derivative 8 to be a promising lead compound for the development of a novel chemical class of antitubercular drugs

    Antimycobacterial terpenoids from Juniperus communis L. (Cuppressaceae)

    No full text
    Juniperus communis is a plant which has been reported as a traditional cure for tuberculosis (TB) and other respiratory diseases. The aim of this study was to isolate and identify the constituents responsible for the activity of the n-hexane extract of Juniperus communis roots against Mycobacterium tuberculosis H(37)Rv and Juniperus communis aerial parts against Mycobacterium aurum. Subsequently, it was to evaluate the activity of the pure isolated compounds against (i) drug-resistant Mycobacterium tuberculosis variants, (ii) non-replicating Mycobacterium tuberculosis and (iii) a range of non-tuberculous mycobacteria (NTM). The antimycobacterial activity of Juniperus communis extracts, fractions and constituents was determined against Mycobacterium tuberculosis H37Rv, and against rifampicin-, isoniazid-, streptomycin- and moxifloxacin-resistant variants, using the microplate broth Alamar Blue assay (MABA) method. Isolated constituents were tested against non-replicating Mycobacterium tuberculosis H37Rv, using the low oxygen recovery assay (LORA), and against NTM (Mycobacterium aurum, Mycobacterium phlei, Mycobacterium fortuitum and Mycobacterium smegmatis), using a broth microdilution method. Cytotoxicty studies were performed using mammalian Vero cells. The anti mycobacterial activity of Juniperus communis was attributed to a sesquiterpene identified as longifolene (1) and two diterpenes, characterised as totarol (2) and trans-communic acid (3). All compounds were identified following analysis of their spectroscopic data (1D- and 2D-NMR, MS) and by comparison with the literature and commercial authentic standards when available. Revised assignments for 3 are reported. Totarol showed the best activity against Mycobacterium tuberculosis H37Rv (MIC of 73.7 mu M). It was also most active against the isoniazid-, streptomycin, and moxifloxacin-resistant variants (MIC of 38.4, 83.4 and 60 mu M, respectively). Longifolene and totarol were most active against the rifampicin-resistant variant (MICs of 24 and 20.2 mu M, respectively). Totarol showed the best activity in the LORA assay (MIC of 81.3 mu M) and against all NTM species (MICs in the range of 7-14 mu M). Transcommunic acid showed good activity against Mycobacterium aurum (MIC of 13.2 mu M). The low selectivity indices (SI) obtained following cytotoxicity studies indicated that the isolated terpenoids were relatively toxic towards mammalian cells. This is the first report of the isolation of (1) and (2) from Juniperus communis roots, and of (3) from the aerial parts. The anti mycobacterial activity of (1) and (3), and the activity of (2) against Mycobacterium aurum, Mycobacterium fortuitum and Mycobacterium phlei, is reported for the first time. The effect of totarol on drug-resistant variants and non-replicating Mycobacterium tuberculosis has never been published. The presence of anti mycobacterial terpenoids in Juniperus communis aerial parts and roots justifies, to some extent, the ethnomedicinal use of this species as a traditional anti-TB remed
    corecore