
In vitro and in vivo antimycobacterial activities of ketone and amide
derivatives of quinoxaline 1,4-di-N-oxide

Raquel Villar1, Esther Vicente1, Beatriz Solano1, Silvia Pérez-Silanes1, Ignacio Aldana1,
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Objectives: To evaluate a novel series of quinoxaline 1,4-di-N-oxides for in vitro activity against
Mycobacterium tuberculosis and for efficacy in a mouse model of tuberculosis (TB).

Methods: Ketone and amide derivatives of quinoxaline 1,4-di-N-oxide were evaluated in in vitro and
in vivo tests including: (i) activity against M. tuberculosis resistant to currently used antitubercular
drugs including multidrug-resistant strains (MDR-TB resistant to isoniazid and rifampicin); (ii) activity
against non-replicating persistent (NRP) bacteria; (iii) MBC; (iv) maximum tolerated dose, oral bioavail-
ability and in vivo efficacy in mice; and (v) potential for cross-resistance with another bioreduced drug,
PA-824.

Results: Ten compounds were tested on single drug-resistant M. tuberculosis. In general, all
compounds were active with ratios of MICs against resistant and non-resistant strains of �4.00. One
compound, 5, was orally active in a murine model of TB, bactericidal, active against NRP bacteria and
active on MDR-TB and poly drug-resistant clinical isolates (resistant to 3–5 antitubercular drugs).

Conclusions: Quinoxaline 1,4-di-N-oxides represent a new class of orally active antitubercular drugs.
They are likely bioreduced to an active metabolite, but the pathway of bacterial activation was different
from PA-824, a bioreducible nitroimidazole in clinical trials. Compound 5 was bactericidal and active
on NRP organisms indicating that activation occurred in both growing and non-replicating bacteria
leading to cell death. The presence of NRP bacteria is believed to be a major factor responsible for the
prolonged nature of antitubercular therapy. If the bactericidal activity and activity on non-replicating
bacteria in vitro translate to in vivo conditions, quinoxaline 1,4-di-N-oxides may offer a path to
shortened therapy.
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Introduction

Tuberculosis (TB) is a contagious disease with high mortality
worldwide. It is estimated that 1.7 million deaths resulted from
TB in 2006, and there are an estimated 8 million new cases each
year. Moreover, up to 50 million people are infected with
drug-resistant forms of TB.1 Although drug-resistant TB has

existed since the introduction of the anti-TB chemotherapy, the
global magnitude of drug-resistant TB was not adequately studied
until recently.2 The magnitude and extent of drug-resistant strains
have increased concern that TB may once again become an incur-
able disease and emphasized the need for new drugs to treat this
infection. The recent appreciation of the widespread existence of
extensively drug-resistant tuberculosis (XDR-TB) has further
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heightened the awareness of the need for new anti-tubercular
agents with novel modes of action and full activity on poly drug-
resistant strains (resistant to 3–5 antitubercular drugs), including
multidrug resistance (MDR; resistant to isoniazid and rifampicin)
and XDR-TB.3–9

Our group has previously reported on the synthesis and
biological evaluation of a large number of quinoxaline and
quinoxaline 1,4-di-N-oxide derivatives.10 – 15 Various 2-acetyl,
2-benzoyl and 2-carboxamide quinoxaline derivatives have been
evaluated as anti-Mycobacterium tuberculosis agents.16,17

Specific analogues showed good in vitro parameters in cyto-
toxicity assays and in a TB-infected macrophage model. We
later confirmed the antimicrobial activity of this class of com-
pounds, and report here on the in vitro activity of ketone and
amide derivatives of quinoxaline 1,4-di-N-oxide against different
strains of drug-resistant M. tuberculosis and in the rapid in vivo
mouse efficacy model conducted as part of the Tuberculosis
Antimicrobial Acquisition and Coordinating Facility (TAACF).

Materials and methods

Synthesis of compounds

The methods for the synthesis of quinoxaline-2-acetyl, 2-benzoyl
and 2-carboxamide 1,4-di-N-oxide derivatives were reported else-
where.16,17 A list of compounds, their structures and significant
values from the earlier assays are presented in Table 1 and Figure 1.

The criteria used by the TAACF for moving a compound on to
in vivo testing includes a selectivity index, defined as the ratio of
the measured IC50 in VERO cells to the MIC, of .10. In the same
way, the concentrations which cause a 90% reduction in residual
mycobacterial growth in the macrophage assay should be lower than

16 � the MIC.16,17

Determination of MICs against single drug-resistant

M. tuberculosis and MBC

MICs were determined in the microplate Alamar Blue assay
(MABA)18,19 for strains of single drug-resistant (SDR) M. tuberculosis

(each strain resistant to a single TB drug): isoniazid (ATCC 35822),
rifampicin (ATCC 35838), thiacetazone (ATCC 35829), ethambutol
(ATCC 35837), p-aminosalicylic acid (ATCC 35821), ethionamide
(ATCC 35839) and ciprofloxacin (laboratory stock collection) as well

as the drug-susceptible H37Rv strain (ATCC 35801). Generally, MICs
for SDR strains should not be .10� the MIC for non-resistant strains
to continue compound evaluation.

The MBC was then determined for M. tuberculosis H37Rv strain
by subculturing onto drug-free solid medium and enumeration of

Cfu after drug exposure in Middlebrook 7H9 medium supplemented
with drug concentrations equivalent to and higher than the pre-
viously determined MICs against the respective strains. Samples
were incubated for 7 days at 378C and then plated for change in cfu.
Cfu was read after 10 days of incubation and followed for any

changes in cfu for a total of 21 days. The MBC was the lowest con-
centration of drug that killed .99% of the bacterial population
present when the drugs were added.

Potential for cross-resistance with PA-824

PA-824 is a nitroimidazole agent in clinical trials for treating TB.
Mycobacterium bovis strains resistant to PA-824 were obtained from
Dr Lacy Daniels (Texas A&M College of Pharmacy, Kingsville,
TX, USA). M. bovis strains were used because: (i) these represented

the best genetically and biochemically characterized mycobacterial
strains resistant to PA-824; and (ii) M. bovis is 99.9% identical to
M. tuberculosis at the genetic level.20 MICs were determined using
microbroth dilution. PA-824 was obtained from the Global Alliance

for Tuberculosis Drug Development (New York, NY, USA).

Determination of MICs against four poly drug-resistant and

MDR-TB strains

MDR-TB strains obtained from Dr R. C. Chan (Department of
Microbiology, Chinese University of Hong Kong, Prince of Wales
Hospital, Shatin, New Territories, Hong Kong, China)21 were
cultured in 7H9 broth supplemented with ADC (Middlebrook ADC
Enrichment containing bovine albumin fraction V, glucose and cata-

lase) until an OD600 of 0.6–0.8 was obtained, and then frozen in ali-
quots at –808C until required. Bacterial suspensions were prepared
to reach an inoculum of 105 cfu per well in a total volume of

Table 1. Structures and previous in vitro activity against M. tuberculosis

Compound R6 R7 R2 MIC (mg/L) SIa IC90/MICb TAACF #

1 H H CH3 3.13 .20.0 0.87 149520

2 H CH3 CH3 3.13 .20.0 0.80 151989

3 H OCH3 CH3 1.56 37.82 4.29 118850

4 H F CH3 3.13 .20.0 0.79 150568

5 H Cl CH3 0.78 20.13 3.13 118845

6 CH3 CH3 CH3 6.25 .10.0 0.44 148142

7 H H Ph 6.25 .10.0 ND 150355

8 H H NH-Ph 3.13 .20.0 0.89 150354

9 H H NH-Ph-(o)CH3 6.25 .10.0 0.42 150356

10 H Cl NH-Ph-(o)CH3 6.25 .10.0 0.14 151986

aSI is the selectivity index calculated as IC50 (concentration inhibiting growth of VERO cells in culture by 50% following 72 h of exposure and assessed
using the CellTiter 96w Non-Radioactive Cell Proliferation Assay reagent from Promega) divided by the MIC.
bIC90/MIC is a measure of the activity against intracellular M. tuberculosis taken up by mouse bone marrow macrophages (concentration required to inhibit
growth of intracellular M. tuberculosis by 90%) divided by the MIC.
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100 mL 7H9 medium. Drugs were dissolved in 100% DMSO to a
50� stock concentration. A 1:2 dilution series of both compounds

were made in a separate 96-well plate using DMSO as the diluent.
Two microlitres of the drugs were transferred to the appropriate
wells of the microtitre plate. Only the inner 60 wells of the 96-well
plate were used in the assay; the surrounding wells were filled with

water to maintain humidity. Microtitre plates were incubated at
378C for at least 14 days and observed every 3–4 days to determine
changes in growth. Growth of the bacteria was scored at different
days by a visual read and by a terminal spectrophotometer reading
at OD600.

Maximum tolerated dose (MTD) and oral bioavailability

All experiments using mice were approved by the Animal Care and
Use Committee at Colorado State University (approval 06-221A-02,
expiration date 17 October 2008) and under the Animal Welfare

Assurance number A3572-01. C57BL/6 female mice were orally
administered (by gavage) a single dose of drug at 100, 300 and
500 mg/kg, using three mice per dose. Mice were observed post-
administration at 4 and 6 h, and then twice daily for the duration of
the study (1 week). Oral bioavailability was determined by bioassay

as described.22

Rapid in vivo screen

Eight- to 10-week-old female specific pathogen-free C57BL/
6-Ifngtm1ts mice [gamma interferon gene-disrupted (GKO) mice]

were purchased from Jackson Laboratories, Bar Harbor, ME,
USA.23 The mice were infected via low-dose aerosol exposure to
M. tuberculosis Erdman using a Middlebrook aerosol generation
device (Glas-Col Inc., Terre Haute, IN, USA), and the short-course
mouse model was performed as described previously.24 Briefly this

involves a delivery of �50–100 cfu to each mouse and this is con-
firmed 1 day post-infection by sacrificing three mice to verify the
uptake of 50–100 cfu of bacteria per mouse. Treatment is initiated
15–18 days post-infection for nine daily treatments of one single

oral dose (at 300 mg/kg). Bacterial load is determined the day after
the nineth daily dose of drug in the lungs and spleens of the mice
by serial dilution of the tissue homogenates on nutrient Middlebrook
7H11 agar plates (GIBCO-BRL, Gaithersburg, MD, USA). The plates
were incubated at 378C in ambient air for 4 weeks prior to the count-

ing of viable M. tuberculosis colonies (cfu). The viable bacterial
numbers were converted to logarithms, which were then evaluated by
multiple-comparison analysis of variance by a one-way Dunnett test
(SigmaStat software program). Differences were considered significant
at the 95% level of confidence. Negative control mice remained

untreated. An isoniazid control group, administered via oral gavage at
25 mg/kg/day, was included in each study. Each treatment group con-
sisted of five mice. Five infected mice were killed at the start of treat-
ment as pre-treatment controls. Drugs were administered daily by oral
gavage.

Dose–response in the rapid in vivo screen

The in vivo activity of compound 5 (TAACF 118845) was examined

in the rapid screening model as a repeat of the efficacy testing and
to determine the minimal effective dose. Doses of 25, 100 and
300 mg/kg were tested using the same methods as in the initial
in vivo test.

Statistical analysis

The viable counts were converted to logarithms, which were then
evaluated by a one-way ANOVA followed by a multiple comparison
analysis of variance by a one-way Tukey test (SigmaStat software

program). Differences were considered significant at the 95% level
of confidence.

Activity against non-replicating persistent M. tuberculosis

The activity of compound 5 against non-replicating M. tuberculosis
was determined by measuring inhibitory activity under anaerobic
conditions against M. tuberculosis adapted to low oxygen.25 This
Low Oxygen Recovery Assay (LORA) quantifies antibacterial
activity by measuring the subsequent ability of a recombinant, con-

taining a plasmid with an acetamidase promoter driving a bacterial
luciferase gene, to produce a luminescent signal when placed back
into an environment with ambient oxygen. The activity against the
same reporter strain is also tested under aerobic conditions as
follows. The microplate cultures with added drug were placed in an

incubator under ambient gaseous conditions (5% CO2-enriched air)
for 7 days and 100 mL culture was transferred to white 96-well
microtitre plates to determine the luminescence.

Results and discussion

The most potent compounds from our previous studies were
subjected to the following set of tests: determination of MIC
against different SDR strains of M. tuberculosis, MBC, oral
bioavailability, MTD and in vivo efficacy in mice.

Table 2 shows the MIC values obtained against SDR strains
of M. tuberculosis, including those resistant to isoniazid,
rifampicin, thiacetazone, ethambutol, ciprofloxacin, kanamycin,
ethionamide and p-aminosalicylic acid. MIC was also retested
against a susceptible strain. In general, all the compounds
showed good MIC values against resistant strains. Results
showed that the most moderate activity was observed against the
ciprofloxacin-resistant strain, and MICs ranged between 6.25 and
12.5 mg/L, although compound 9 revealed the poorest activity
against an isoniazid-resistant strain, with an MIC value of
100 mg/L. The susceptibilities of rifampicin, thiacetazone,
ethambutol and p-aminosalicylic acid-resistant strains can be
considered comparable to those of H37Rv, as was indicated by
the ratios of MICs against resistant and non-resistant strains
(Table 3), which were generally �1. This indicates that there is
a little, if any, cross-resistance with the current anti-TB drugs
thereby supporting a novel mechanism of action. These results
are promising for the development of new effective compounds
against the growing number of drug-resistant strains. Only com-
pound 9 showed resistance with the isoniazid-resistant strain,
with a ratio .31.9. The reason for this finding is unknown.

Compound 5 was also active against MDR-TB strains,
including strains with resistance to additional TB drugs and

N+

N+
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O

CH3
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R6

O–
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Figure 1. Quinoxaline 1,4-di-N-oxide core structure.
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quinolones (Table 4). The activity on the drug-susceptible strain
and the four MDR-TB strains varied only 2-fold, which is
within the variation of MIC determinations. One of the strains
tested was resistant to isoniazid, rifampicin, streptomycin,
ethambutol and pyrazinamide, indicating that quinoxaline
1,4-di-N-oxides will maintain activity on MDR and poly drug-
resistant strains. Such activity is particularly important in light
of the recent reports of XDR strains of TB.3 – 5,7 – 9,26 Overall,
compound 5 was tested and found to be active on M. tuberculo-
sis H37Rv, M. tuberculosis strain Erdman, M. bovis strain BCG
Montreal (also a human pathogen), four independent clinical
isolates of M. tuberculosis from China with multiple resistance
phenotypes and eight SDR strains of M. tuberculosis (Table 2).

Compound 5 is likely activated via bioreduction in bacteria,
similar to the reduction observed for other substituted
N-oxides.27 Since PA-824, a nitroimidazole in clinical trials for
treating TB,28 is bioreduced to an active intermediate,29 – 31 we

tested the activity of compound 5 against an isogenic set of
M. bovis strains with defined resistance to PA-824 (Table 5).
PA-824 is bioreduced to an active form by a pathway involving
the deazaflavin F420 cofactor-dependent glucose dehydrogenase
(Fdg1)29 and other cellular factors including molybdopterin, a
cofactor for many oxido-reductase enzymes. Thus, loss of func-
tion of Fdg1 or loss of the ability to synthesize the F420 cofactor
leads to resistance to PA-824 (Table 5). Compound 5 was active
on all PA-824-resistant M. bovis strains tested, thus showing the
lack of cross-resistance and supporting a different pathway of
drug activation.

The antitubercular activity of compound 5 was concurrently
tested against M. tuberculosis strain H37Rv using MABA and
strain Rv containing the luciferase reporter, both under aerobic
conditions; activity was comparable in both cases (Table 5).
Niclosamide was included as another control compound that is
structurally different from PA-824 and activated by a different

Table 3. Ratios of MICs against resistant and non-resistant strains

Compound

Resistant strain MIC: H37Rv MICa

INH-R RIF-R TAC-R EMB-R CIP-R KAN-R ETA-R PAS-R

1 2.00 1.00 1.00 1.00 2.00 1.00 2.00 ND

2 2.00 1.00 ND 1.00 4.00 2.00 ND ND

3 �4.00 �2.00 ND ND �8.00 �4.00 ND ND

4 NDb ND �0.13 ND �2.00 ND �2.00 ND

5 2.00 �0.50 ND �0.50 2.00 1.00 ND ND

6 �2.00 ND �2.00 ND �4.00 �2.0 �2.0 ND

7 ND ND �0.06 �0.13 �2.00 ND �2.00 ND

8 2.00 1.00 1.00 1.00 2.00 1.00 1.00 ND

9 31.9 �1.00 �1.00 �1.00 2.00 2.00 2.00 ND

10 1.00 �0.5 �0.5 ND 1.00 ND 1.00 ND

aINH-R, isoniazid-resistant strain; RIF-R, rifampicin-resistant strain; TAC-R, thiacetazone-resistant strain; EMB-R, ethambutol-resistant strain; CIP-R,
ciprofloxacin-resistant strain; KAN-R, kanamycin-resistant strain; ETA-R, ethionamide-resistant strain; PAS-R, p-aminosalicylic-acid-resistant strain. Ratios of
MICs against resistant and non-resistant strains with values of 1–4 indicate activity against the resistant strain within experimental error.
bND, no data available, or endpoints not attained in Table 2 data.

Table 2. Determination of MIC against strains of SDR M. tuberculosis

Compound

MIC (mg/L)a

H37Rv INH-R RIF-R TAC-R EMB-R CIP-R KAN-R ETA-R PAS-R

1 3.13 6.25 3.13 3.13 3.13 6.25 3.13 6.25 ND

2 3.13 6.25 3.13 ND 3.13 12.5 6.25 ND ND

3 �1.56 6.25 3.13 ND �1.56 12.5 6.25 ND ND

4 �1.56 NDb �1.56 0.2 ND 3.13 ND 3.13 �1.56

5 0.78 1.56 �0.39 ND �0.39 1.56 0.78 ND ND

6 �3.13 6.25 �3.13 6.25 �3.13 12.5 6.25 6.25 ND

7 �3.13 ND �3.13 0.2 0.39 6.25 ND 6.25 �3.13

8 3.13 6.25 3.13 3.13 3.13 6.25 3.13 3.13 ND

9 3.13 100 �3.13 �3.13 �3.13 6.25 6.25 6.25 ND

10 6.25 6.25 �3.13 �3.13 ND 6.25 ND 6.25 ND

aINH-R, isoniazid-resistant strain; RIF-R, rifampicin-resistant strain; TAC-R, thiacetazone-resistant strain; EMB-R, ethambutol-resistant strain; CIP-R,
ciprofloxacin-resistant strain; KAN-R, kanamycin-resistant strain; ETA-R, ethionamide-resistant strain; PAS-R, p-aminosalicylic-acid-resistant strain.
bND, no data available.
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pathway. Table 5 also shows that compound 5 is equally
active on growing bacteria and non-replicating persistent
(NRP) bacteria adapted to low oxygen in the LORA test. In
this test, activity was 1.65 and 1.21 mM (0.42 and 0.31 mg/L)
against growing and NRP bacteria, respectively. This is

another unique and important property of quinoxaline
1,4-di-N-oxides that may translate to a faster sterilization of
infected tissues. The long continuation phase for the treatment
of TB is believed to be in part due to the presence of non-
replicating organisms that persist even in the presence of anti-
tubercular drugs. PA-824 is an experimental nitroimidazole
that is in Phase I clinical trials. PA-824 is bioreduced by
M. tuberculosis to an active component but unlike compound
5, PA-824 is only about 1/10 as active against NRP bacteria
compared with aerobically growing cells.

The MBCs of several compounds against H37Rv were deter-
mined (Table 6). A compound is generally considered to be bac-
tericidal if the ratio of MIC to MBC is �4;32 so, compounds 1,
5 and 8 could be considered to be bactericidal due to the low
ratios obtained. On the other hand, compounds 3, 6 and 9,
which showed higher MBC/MIC ratios for H37Rv, may be less
bactericidal.

Compound 5 was chosen for evaluation in in vivo assays. The
MTD of compound 5 was determined by using an escalating
dose of drug given to mice by oral gavage. No adverse effects
or reactions were observed at a dose of 500 mg/kg in this test of
acute, single dose toxicity. Compound 5 was orally bioavailable
as assessed in the bioassay method22 with an estimated blood
level of �5 mg/L at 30 min post-oral dosing of mice with
200 mg/kg.

Preliminary in vivo evaluation of compound 5 was made at a
dose of 300 mg/kg in infected GKO C57BL/6 mice.24 This com-
pound afforded significant reductions of 2.7 and 2.82 log10 cfu in
the lung and spleen tissues, respectively, versus the untreated con-
trols. Compound 5 was bactericidal in vivo because the cfu
present in the lung and spleen at the start of therapy (day 15) are

Table 5. Activity of compound 5 (mM) in the LORA and on M. bovis strains with defined resistance to PA-824, and M. tuberculosis strain

H37Rv with and without a reporter gene

Compound PA-824 Compd. 5 Niclosamide

Structure

OCF3

O

N

N
O2N N+

N+
O

Cl
O–

O–

OH

Cl
N
H

O Cl

NO2

LORA (RLU)a 1.40 (4.85)b 0.42 (1.65) 0.32 (0.99)

Aerobic (RLU)c 0.10 (0.35) 0.31 (1.21) 0.29 (0.87)

MTB H37Rvd 0.032 (0.11) 0.44 (1.74) 0.64 (1.97)

BCGe WT 0.035 (0.12) 0.41 (1.63) 1.02 (3.13)

fgd (F420-dependent) .37.0 (.128) 0.81 (3.19) 0.53 (1.61)

moaA (molybdopterin synthesis) .37.0 (.128) 0.50 (1.97) 0.61 (1.86)

fbi C (F420 synthesis) .37.0 (.128) 0.47 (1.84) 0.51 (1.57)

moaD (molybdopterin synthesis) .37.0 (.128) 0.98 (3.87) 0.62 (1.90)

pil 8f (Rv2627) .37.0 (.128) 0.75 (2.96) 0.61 (1.87)

Comment active in vivo; some activity in LORA active in vivo; active in LORA inactive in vivo; active in LORA

aLORA (RLU): low oxygen recovery assay using relative light units.
bValues are in mg/L with micromolar values given in parentheses.
cAerobic (RLU): the same strain used in the LORA (MTB H37Rv containing a plasmid with an acetamidase promoter driving a bacterial luciferase gene) but
incubated aerobically (5% CO2 enriched air) for 7 days and 100 mL culture transferred to white 96-well microtitre plates for determination of luminescence.
dM. tuberculosis strain Rv measured in MABA.
eBCG: M. bovis strain BCG Montreal measured in MABA as were all other M. bovis strains.
fpil 8: Rv2627, function unknown.

Table 4. Activity of compound 5 and moxifloxacin control (mg/L)

on drug-resistant clinical isolates of M. tuberculosis

Straina

M10 M13 M14 M70 H37Rv

DNA gyrase A

mutation

none Asp-94!Gly none Asp-94!Gly none

INHb R R R R S

RIF R S R R S

STR R R R S S

ETH R S S R S

PZA R S R R S

Moxifloxacin

MIC (mg/L)

0.5 2 0.25 2 0.2

Compd. 5

MIC (mg/L)

1.25 1.25 0.625 1.25 0.625

aStrains M10, M13, M14 and M70 were obtained from Dr A. Cheng,
Department of Microbiology, Chinese University of Hong Kong, Prince of
Wales Hospital, Shatin, New Territories, Hong Kong, China.21

bINH, isoniazid; RIF, rifampicin; STR, streptomycin; ETH, ethionamide;
PZA, pyrazinamide.
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lowered by greater than 2 logs (i.e. 99% killing) following 9 days
of treatment. Visual inspection showed little lung pathology with
a few small granulomas. Spleens appeared visibly normal and
mice appeared normal and active. The efficacy of the compound
was statistically better than controls (P , 0.05) and equivalent to
the efficacy of isoniazid (P , 0.05). The protection shown by
compound 5 is similar to clinically available compounds.33 In
this same in vivo run, isoniazid at 25 mg/kg/day gave a reduction
in cfu of 3.1 and 4.37 log10 in the lungs and spleen, respectively,
and was bactericidal.

In a second experiment, the dose–response of compound 5
in vivo was determined using the GKO mouse model at doses of
25, 100 and 300 mg/kg (Table 7). Compound 5 was active in
the lung and spleen at 100 and 300 mg/kg (P , 0.001), respect-
ively. At 25 mg/kg, it was active in the spleen (P , 0.05) but
not statistically active in the lung. Activity at 300 mg/kg dosing
was striking in that it lowered the cfu by 4.04 and 5.19 log cfu,
respectively, in the lung and spleen. Bactericidal activity was
detected at the higher doses of 100 and 300 mg/kg (Table 7). No
clear toxicity was apparent in the first in vivo experiment, while

Table 6. MBCs against H37Rv and SDR strainsa

Compound

MTB H37Rv INH-resistant RIF-resistant

MIC (mg/L) MBC (mg/L) MBC/MIC MIC (mg/L) MBC (mg/L) MBC/MIC MIC (mg/L) MBC (mg/L) MBC/MIC

1 3.13 6.25 2.00 3.13 3.13 1.0 3.13 3.13 1.0

3 �1.56b 12.5 �8.00 6.25 6.25 1.0 3.13 3.13 1.0

5 0.78 0.78 1.00 1.56 0.78 0.5 �0.39 0.78 �2.0

6 �3.13 12.5 �4.0 ,3.13 12.5 �4.0 6.25 6.25 1.0

8 3.13 6.25 2.0 6.25 6.25 1.0 3.13 3.13 1.0

9 �3.13 12.5 �4.0 100 50 0.5 �3.13 6.25 �2.0

aINH, isoniazid; RIF, rifampicin.
bOn occasion, the MIC dilution series was not diluted down far enough to capture the MIC in a given test, thus giving limits of the differential.

Table 7. Activity of compound 5 (TAACF 118845) in the mouse low-dose aerosol model

Sample (dose mg/kg) Organ Log cfu/organ (SD) Log cfu decrease versus controls Comments

Exp. 1

untreated—d15 lung 6.81 (+0.09) normal

spleen 5.37 (+0.18) normal

untreated—d24 lung 7.57 (+0.11) normal

spleen 6.57 (+0.17) normal

Isoniazid (25) lung 4.47 (+0.12) 3.10 normal

spleen 2.20 (+0.45) 4.37 normal

118845 (300) lung 4.88 (+0.21) 2.70 normal

spleen 3.75 (+0.18) 2.82 normal

Exp. 2

untreated—d15 lung 6.62 (+0.14) normal

spleen 4.42 (+0.52) normal

untreated—d24 lung 7.76 (+0.10) normal

spleen 6.86 (+0.16) normal

Isoniazid (25) lung 4.43 (+0.06) 3.33 normal

spleen 1.82 (+0.31) 5.04 1 mouse w/o cfu

118845 (25) lung 6.97 (+0.17) 0.79 normal

spleen 6.43 (+0.15) 0.43 normal

118845 (100) lung 6.15 (+0.13) 1.61 normal

spleen 5.62 (+0.17) 1.24 normal

118845 (300) lung 1.82 (+0.95) 4.04 toxicitya

spleen 1.67 (+0.55) 5.19 toxicityb

d15, day 15 post-infection; d24, day 24 post-infection.
aData from only three mice. Two deaths due to apparent drug toxicity. Only one mouse with cfu, other two mice culture negative. Therapy stopped at 7 days.
Slightly lethargic, hunched posture.
bData from only three mice. Two deaths due to apparent drug toxicity. Two mice with cfu, other mouse culture negative. Therapy stopped at 7 days. Slightly
lethargic, hunched posture.
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in the dose–response experiment, some toxicity was observed at
the highest dose; two mice in the 300 mg/kg group died during
treatment, which was truncated to 7 days instead of the usual 9
days. No cfu was recovered from the lungs of two of the surviv-
ing mice or from the spleen of one of the surviving mice dosed
at 300 mg/kg, indicating that the organs may have been
sterilized. Preliminary studies indicate that both in vitro
(cytotoxicity) and in vivo toxicity can be separated from the
antitubercular activity.

In conclusion, an extended evaluation of the in vitro
and in vivo antimycobacterial activities of quinoxaline
1,4-di-N-oxide derivatives was performed. All of them displayed
good inhibitory activity against resistant strains and only com-
pound 9 showed a significant resistance in an isoniazid-resistant
strain. Compounds 1, 5 and 8 can be considered to be bacteri-
cidal due to the low MBC/MIC ratios. Furthermore, compound
5 showed strong in vivo activity comparable to clinically used
TB drugs, although a relatively high dose of compounds was
required to obtain equivalent reductions in lung cfu. Overall,
these data also suggest the importance of the chlorine group in
position 7 of the benzene moiety. The activity of compound 5 is
unique in that it is active on: (i) SDR strains; (ii) poly
drug-resistant clinical isolates, including MDR-TB; and (iii)
NRP mycobacteria. This latter activity may prove important for
attaining cures in a shorter amount of time, since the presence of
NRP bacteria is believed to be a major factor responsible for the
prolonged nature of antitubercular therapy. Additional studies
are planned to further assess the in vivo efficacy of compound
5 alone and in combination with other clinically used and antitu-
bercular drugs in the standard mouse model of TB.
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