95 research outputs found

    Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models

    Full text link
    Monte Carlo simulations have been used to study a vortex-free XY ferromagnet with a random field or a random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness. In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free energy separated by high entropy barriers. Our results for the random field case are consistent with the existence of a Bragg glass phase of the type discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise

    Demagnetization via Nucleation of the Nonequilibrium Metastable Phase in a Model of Disorder

    Full text link
    We study both analytically and numerically metastability and nucleation in a two-dimensional nonequilibrium Ising ferromagnet. Canonical equilibrium is dynamically impeded by a weak random perturbation which models homogeneous disorder of undetermined source. We present a simple theoretical description, in perfect agreement with Monte Carlo simulations, assuming that the decay of the nonequilibrium metastable state is due, as in equilibrium, to the competition between the surface and the bulk. This suggests one to accept a nonequilibrium "free-energy" at a mesoscopic/cluster level, and it ensues a nonequilibrium "surface tension" with some peculiar low-T behavior. We illustrate the occurrence of intriguing nonequilibrium phenomena, including: (i) Noise-enhanced stabilization of nonequilibrium metastable states; (ii) reentrance of the limit of metastability under strong nonequilibrium conditions; and (iii) resonant propagation of domain walls. The cooperative behavior of our system may also be understood in terms of a Langevin equation with additive and multiplicative noises. We also studied metastability in the case of open boundaries as it may correspond to a magnetic nanoparticle. We then observe burst-like relaxation at low T, triggered by the additional surface randomness, with scale-free avalanches which closely resemble the type of relaxation reported for many complex systems. We show that this results from the superposition of many demagnetization events, each with a well- defined scale which is determined by the curvature of the domain wall at which it originates. This is an example of (apparent) scale invariance in a nonequilibrium setting which is not to be associated with any familiar kind of criticality.Comment: 26 pages, 22 figure

    Quantum Probability and Applications (QP-PQ)

    No full text
    More than a century has passed since the discovery of quantum theory and the past forty years have witnessed its intensive mathematical development. In their curricula for probability theory, European universities can no longer afford to neglect the deep conceptual and technical changes that have occurred in our understanding of the laws of chance since the advent of quantum mechanics. The fact that the most advanced contemporary physical theory uses, for its statistical predictions, a probabilistic model completely different from that currently taught in standard university curricula is a historical anomaly that urgently needs to be addressed. The development of a new curriculum in probability theory, at both the undergraduate and postgraduate levels, is the ambitious core aim of this project. In view of our proven competence in the most advanced research in the area, our familiarity with the problems of multidisciplinary collaboration and our broad experience in training across national boundaries, it is achievable. The resulting richer and more varied curricula will encourage more research students into the field, and in turn put skilled specialists at the service of concrete industrial projects as well as enriching European acedemia. The network will become the key organisation for training young European scientists in quantum probability and its applications
    corecore