23 research outputs found

    System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    Get PDF
    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Scaling properties of azimuthal anisotropy in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV

    Full text link
    Detailed differential measurements of the elliptic flow for particles produced in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV are presented. Predictions from perfect fluid hydrodynamics for the scaling of the elliptic flow coefficient v_2 with eccentricity, system size and transverse energy are tested and validated. For transverse kinetic energies KE_T ~ m_T-m up to ~1 GeV, scaling compatible with the hydrodynamic expansion of a thermalized fluid is observed for all produced particles. For large values of KE_T, the mesons and baryons scale separately. A universal scaling for the flow of both mesons and baryons is observed for the full transverse kinetic energy range of the data when quark number scaling is employed. In both cases the scaling is more pronounced in terms of KE_T rather than transverse momentum.Comment: 422 authors from 58 institutions, 6 pages, 3 figures. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Quarkonium production from d+Au to Au+Au collisions

    No full text
    M. Rosati on behalf of the PHENIX Collaboration EIThe PHENIX experiment measured J/ψ\psi production in pp, d+Au and Au+Au reactions at \sqrt{^sNN}=200GeVoverawiderangeofrapidityandtransversemomentum.Thenuclearmodificationfactorobtainedbycomparingthed+Auandppcrosssectionsasafunctionofrapidity,isconsistentwithshadowingofthegluondistributionfunctions.J/ = 200 GeV over a wide range of rapidity and transverse momentum. The nuclear modification factor obtained by comparing the d+Au and pp cross sections as a function of rapidity, is consistent with shadowing of the gluon distribution functions. J/\psi$ production in Au+Au collisions was compared to the production in pp collisions and it was found to be inconsistent with models that predict strong enhancement relative to binary collision scaling
    corecore