44 research outputs found

    Root Apex Transition Zone As Oscillatory Zone

    Get PDF
    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone

    Rapid endocytosis is triggered upon imbibition in Arabidopsis seeds

    Get PDF
    During seed imbibition and embryo activation, rapid change from a metabolically resting state to the activation of diverse extracellular and/or membrane bound molecules is essential and, hence, endocytosis could be activated too. In fact, we have documented endocytic internalization of the membrane impermeable endocytic tracer FM4-64 already upon 30 min of imbibition of Arabidopsis seeds. This finding suggest that endocytosis is activated early during seed imbibition in Arabidopsis. Immunolocalization of rhamnogalacturonan-II (RG-II) complexed with boron showed that whereas this pectin is localized only in the cell walls of dry seed embryos, it starts to be intracellular once the imbibition started. Brefeldin A (BFA) exposure resulted in recruitment of the intracellular RG-II pectin complexes into the endocytic BFA-induced compartments, confirming the endocytic origin of the RG-II signal detected intracellularly. Finally, germination was significantly delayed when Arabidopsis seeds were germinated in the presence of inhibitors of endocytic pathways, suggesting that trafficking of extracellular molecules might play an important role in the overcome of germination. This work constitutes the first demonstration of endocytic processes during germination and opens new perspectives about the role of the extracellular matrix and membrane components in seed germination.Fil: Pagnussat, Luciana Anabella. Universidad Nacional de Mar del Plata; ArgentinaFil: Burbach, Christian. University of Bonn; AlemaniaFil: Baluska, Frantisek. University of Bonn; AlemaniaFil: de la Canal, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentin

    Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains

    Get PDF
    Phototropin (phot)-mediated signaling initiated by blue light (BL) plays a critical role in optimizing photosynthetic light capture at the plasma membrane (PM) in plants. However, the mechanisms underlying the regulation of phot activity at the PM in response to BL remain largely unclear. In this study, by single-particle tracking and step-wise photobleaching analysis we demonstrated that in the dark phot1-GFP proteins remain in an inactive state and mostly present as a monomer. The phot1-GFP diffusion rate and its dimerization increased in a dose-dependent manner in response to BL. In contrast, BL did not affect the lateral diffusion of kinase-inactive phot1 -GFP, whereas it did enhance its dimerization, suggesting that phot1 dimerization is independent of its phosphorylation. Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) analysis revealed that the interaction between phot1-GFP and AtRem1.3-mCherry was enhanced along with increased time of BL treatment. However, the BL-dependent interaction was not obvious in plants co-expressing phot1 -GFP and AtRem1.3-mCherry, implicating that BL facilitated the translocation of functional phot1-GFP into AtRem1.3-labeled microdomains to activate phot-mediated signaling. Conversely, sterol depletion attenuated phot1-GFP dynamics, dimerization, and phosphorylation. Taken together, these results indicate that membrane microdomains act as an organizing platform essential for proper function of activated phot1 at the PM

    Swarming Behavior in Plant Roots

    Get PDF
    Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been analyzed in the context of swarming. Here, we show that roots can be influenced by their neighbors to induce a tendency to align the directions of their growth. In the apparently noisy patterns formed by growing roots, episodic alignments are observed as the roots grow close to each other. These events are incompatible with the statistics of purely random growth. We present experimental results and a theoretical model that describes the growth of maize roots in terms of swarming

    Root Apex Transition Zone as Oscillatory Zone

    No full text
    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command centre. In accordance with the early proposal of Charles and Francis Darwins, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone

    Can subcellular organization be explained only by physical principles?

    No full text
    In a recent forum article, Dan Needleman and Jan Brugues argue that, despite the astonishing advances in cell biology, a fundamental understanding of even the most well-studied subcellular biological processes is lacking.(1) This lack of understanding is evidenced by our inability to make precise predictions of subcellular and cellular behaviors. They suggest that to achieve such an understanding, we need to apply a combination of quantitative experiments with new theoretical concepts and determine the physical principles of subcellular biological organization.(1) We discuss these issues and suggest that, besides biophysics, we need strong theoretical inputs from biocommunication theory in order to understand all the core agents of the cellular life and subcellular organization

    Response to Olsson and Forkman

    No full text
    corecore