132 research outputs found

    Managing intermodal hinterland networks

    Get PDF

    The bullwhip effect

    Get PDF

    Managing intermodal hinterland networks

    Get PDF

    Performance evaluation of stochastic systems with dedicated delivery bays and general on-street parking

    Get PDF
    As freight deliveries in cities increase due to retail fragmentation and e-commerce, parking is becoming a more and more relevant part of transportation. In fact, many freight vehicles in cities spend more time parked than they are moving. Moreover, part of the public parking space is shared with passenger vehicles, especially cars. Both arrival processes and parking and delivery processes are stochastic in nature. In order to develop a framework for analysis, we propose a queueing model for an urban parking system consisting of delivery bays and general on-street parking spaces. Freight vehicles may park both in the dedicated bays and in general on-street parking, while passenger vehicles only make use of general on-street parking. Our model allows us to create parsimonious insights into the behavior of a delivery bay parking stretch as part of a limited length of curbside. We are able to find explicit expressions for the relevant performance measures, and formally prove a number of monotonicity results. We further conduct a series of numerical experiments to show more intricate properties that cannot be shown analytically. The model helps us shed light onto the effects of allocating scarce urban curb space to dedicated unloading bays at the expense of general on-street parking. In particular, we show that allocating more space to dedicated delivery bays can also make passenger cars better off

    Estimating the benefits of dedicated unloading bays by field experimentation

    Get PDF
    In most dense urban environments in emerging markets, retail deliveries are very fragmented to thousands of nanostores. It is not uncommon for a delivery route to include more than 60 stops. Unloading bays are often blocked by regular traffic. Due to the complex urban environment, it is difficult to estimate the benefits of making unloading bays available. In this study, we conduct a field experiment in an urban field lab of one square kilometer in the downtown of Querétaro, Mexico. During the treatment period of one week, we obtain help from the local traffic police to keep the unloading bays available for unloading only. Using advanced GPS devices and extensive manual field observations, we are able to capture the change in driver behavior and the direct efficiency increases. We find a high efficiency gain, not only in travel time (39%) but also – remarkably – in the total time parked (17%). Corrected for other effects, we estimate a gain of about 44% in total time per delivery. Apart from the insights on unloading benefits, we also provide insights into the method of field experimentation in such a complex environment

    Switching Transport Modes to Meet Voluntary Carbon Emission Targets

    Full text link

    Port connectivity indices: an application to European RoRo shipping

    Get PDF
    In recent years, there has been significant interest in the development of connectivity indicators for ports. For short sea shipping, especially in Europe, Roll-on Roll-off (RoRo) shipping is almost equally important as container shipping. In contrast with container shipping, RoRo shipments are primarily direct, thus the measurement of its connectivity requires a different methodology. In this paper, we present a methodology for measuring the RoRo connectivity of ports and illustrate its use through an application to European RoRo shipping. We apply the methodology on data collected from 23 different RoRo shipping service providers concerning 620 unique routes connecting 148 ports. We characterize the connectivity of the ports in our sample and analyze the results. We show that in terms of RoRo connectivity, neither the number of links nor the link quality (frequency, number of competing providers, minimum number of indirect stops) strictly dominate the results of our proposed indicator. The highest ranking ports combine link quality and number. Finally, we highlight promising areas for future research based on the insights obtained.</p
    • …
    corecore