4,741 research outputs found

    Prognostic value of peripheral lymphocyte count in hormone therapy of advanced breast cancer.

    Get PDF
    Peripheral lymphocyte counts were performed on 41 patients with advanced breast cancer, before starting treatment with oestrogens or androgens. Patients were seen at monthly intervals, and the response to treatment was independently assessed, using the criteria of the British Breast Group. In the patients treated with oestrogens and androgens, the successful responders were found to have significantly higher pre-treatment peripheral lymphocyte counts than the intermediate responders and failures. It is suggested that pre-treatment peripheral lymphocyte counts may have a prognostic value in assessing potential response to hormone therapy in patients with breast cancer

    The impact of space and space-related activities on a local economy. a case study of boulder, colorado. part ii- the income-product accounts

    Get PDF
    Total impact of space and space related activities on local economy of Boulder, Colorado - income-product account

    Efficient algorithms for tensor scaling, quantum marginals and moment polytopes

    Full text link
    We present a polynomial time algorithm to approximately scale tensors of any format to arbitrary prescribed marginals (whenever possible). This unifies and generalizes a sequence of past works on matrix, operator and tensor scaling. Our algorithm provides an efficient weak membership oracle for the associated moment polytopes, an important family of implicitly-defined convex polytopes with exponentially many facets and a wide range of applications. These include the entanglement polytopes from quantum information theory (in particular, we obtain an efficient solution to the notorious one-body quantum marginal problem) and the Kronecker polytopes from representation theory (which capture the asymptotic support of Kronecker coefficients). Our algorithm can be applied to succinct descriptions of the input tensor whenever the marginals can be efficiently computed, as in the important case of matrix product states or tensor-train decompositions, widely used in computational physics and numerical mathematics. We strengthen and generalize the alternating minimization approach of previous papers by introducing the theory of highest weight vectors from representation theory into the numerical optimization framework. We show that highest weight vectors are natural potential functions for scaling algorithms and prove new bounds on their evaluations to obtain polynomial-time convergence. Our techniques are general and we believe that they will be instrumental to obtain efficient algorithms for moment polytopes beyond the ones consider here, and more broadly, for other optimization problems possessing natural symmetries

    Exploration adjustment by ant colonies

    Get PDF
    © 2016 The Authors. How do animals in groups organize their work? Division of labour, i.e. the process by which individuals within a group choose which tasks to perform, has been extensively studied in social insects. Variability among individuals within a colony seems to underpin both the decision over which tasks to perform and the amount of effort to invest in a task. Studies have focused mainly on discrete tasks, i.e. tasks with a recognizable end. Here, we study the distribution of effort in nest seeking, in the absence of new nest sites. Hence, this task is open-ended and individuals have to decide when to stop searching, even though the task has not been completed. We show that collective search effort declines when colonies inhabit better homes, as a consequence of a reduction in the number of bouts (exploratory events). Furthermore, we show an increase in bout exploration time and a decrease in bout instantaneous speed for colonies inhabiting better homes. The effect of treatment on bout effort is very small; however, we suggest that the organization of work performed within nest searching is achieved both by a process of self-selection of the most hard-working ants and individual effort adjustment

    Topological Entropy of Braids on the Torus

    Full text link
    A fast method is presented for computing the topological entropy of braids on the torus. This work is motivated by the need to analyze large braids when studying two-dimensional flows via the braiding of a large number of particle trajectories. Our approach is a generalization of Moussafir's technique for braids on the sphere. Previous methods for computing topological entropies include the Bestvina--Handel train-track algorithm and matrix representations of the braid group. However, the Bestvina--Handel algorithm quickly becomes computationally intractable for large braid words, and matrix methods give only lower bounds, which are often poor for large braids. Our method is computationally fast and appears to give exponential convergence towards the exact entropy. As an illustration we apply our approach to the braiding of both periodic and aperiodic trajectories in the sine flow. The efficiency of the method allows us to explore how much extra information about flow entropy is encoded in the braid as the number of trajectories becomes large.Comment: 19 pages, 44 figures. SIAM journal styl

    The effect of sex hormones on the growth of HeLa tumour nodules in male and female mice.

    Get PDF
    The effect of exogenous sex hormones on the cell mediated response in male and female mice has been studied by measuring the subcutaneous growth of HeLa tumour nodules and the variation in the total lymphocyte count. It was found that oestrogen treated male and female mice experienced a profound lymphopenia which was vary rapid in onset. Concurrent with the lymphopenia there was prolongation of HeLa tumour nodule growth in female mice, but not in males. A lymphopenia occurred in androgen treated male mice with subsequent prolongation of HeLa tumour nodule growth, and a lymphocytosis in female mice, with reduction of HeLa tumour nodule growth

    Landmarks and ant search strategies after interrupted tandem runs

    Get PDF
    © 2014. Published by The Company of Biologists Ltd. During a tandem run, a single leading ant recruits a single follower to an important resource such as a new nest. To examine this process, we used a motorized gantry, which has not previously been used in ant studies, to track tandem running ants accurately in a large arena and we compared their performance in the presence of different types of landmark. We interrupted tandem runs by taking away the leader and moved a large distant landmark behind the new nest just at the time of this separation. Our aim was to determine what information followers might have obtained from the incomplete tandem run they had followed, and how they behaved after the tandem run had been interrupted. Our results show that former followers search by using composite random strategies with elements of sub-diffusive and diffusive movements. Furthermore, when we provided more landmarks former followers searched for longer. However, when all landmarks were removed completely from the arena, the ants' search duration lasted up to four times longer. Hence, their search strategy changes in the presence or absence of landmarks. Even after extensive search of this kind, former followers headed back to their old nest but did not return along the path of the tandem run they had followed. The combination of the position to which the large distant landmark behind the new nest was moved and the presence or absence of additional landmarks influenced the orientation of the former followers' paths back to the old nest. We also found that these ants exhibit behavioural lateralization in which they possibly use their right eye more than their left eye to recognize landmarks for navigation. Our results suggest that former follower ants learn landmarks during tandem running and use this information to make strategic decisions
    corecore