4 research outputs found

    Grapevine Biotechnology: Molecular Approaches Underlying Abiotic and Biotic Stress Responses

    Get PDF
    Grapevine is one of the most abundant crops worldwide, with varieties destined for fresh and dry consumption, as well as wine production. Unfortunately, grapevine plants are affected by both biotic and abiotic stresses, generating significant economic losses. These conditions can negatively impact grape cultivation at different stages: plant and berry development during pre- and post-harvest, production, fresh fruit processing and export, along with wine quality. Most of the grapevine varieties are susceptible to several pathogens and within this chapter, particular attention is given to fungi (Botrytis cinerea and Erysiphe necator) and viruses, since they are a worldwide concern. Within the latter, special focus is given to the grapevine leafroll disease, a complex and destructive infection. On the other hand, abiotic stress is also relevant in grapevine, and in this chapter it will be exemplified by UV-B radiation and its impact on growth and fruit development, plant adaptive responses and its relationship with the quality of grape berries for winemaking. The main biotic and abiotic grapevine stress factors are reviewed in this chapter, considering a special focus on biotechnological approaches carried out in order to address them and minimize their detrimental consequences

    An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment

    Get PDF
    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana, its iron–sulfur subunit (SDH2) is encoded by three genes, one of them (SDH2.3) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (114 to +49) possessing all the cis-elements necessary and sufficient for high expression in seeds. This region includes between 114 and 32 three ABRE (ABAresponsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5’ untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron–sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy

    Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors

    No full text
    We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.CONICYT, Chile Fondecyt 1110835 1140345 Fondecyt 11090060 Fondecyt 1085210 Fondef D04I1338 Fondecyt 11140204 PAI 7812030019 CCTE-PFB1
    corecore