16,434 research outputs found

    Lorentz contraction, Bell's spaceships, and rigid body motion in special relativity

    Get PDF
    The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier treatments.Comment: Modified the discussion in Sec. 2. This version to be published in European Journal of Physic

    FOCIS: A forest classification and inventory system using LANDSAT and digital terrain data

    Get PDF
    Accurate, cost-effective stratification of forest vegetation and timber inventory is the primary goal of a Forest Classification and Inventory System (FOCIS). Conventional timber stratification using photointerpretation can be time-consuming, costly, and inconsistent from analyst to analyst. FOCIS was designed to overcome these problems by using machine processing techniques to extract and process tonal, textural, and terrain information from registered LANDSAT multispectral and digital terrain data. Comparison of samples from timber strata identified by conventional procedures showed that both have about the same potential to reduce the variance of timber volume estimates over simple random sampling

    Local Density Approximation Description of Electronic Properties of Wurtzite Cadmium Sulfide (w-CdS)

    Full text link
    We present calculated, electronic and related properties of wurtzite cadmium sulfide (w-CdS). Our ab-initio, non-relativistic calculations employed a local density functional approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). Following the Bagayoko, Zhao, and Williams (BZW) method, we solved self-consistently both the Kohn-Sham equation and the equation giving the ground state density in terms of the wave functions of the occupied states. Our calculated, direct band gap of 2.47 eV, at the point, is in excellent agreement with experiment. So are the calculated density of states and the electron effective mass. In particular, our results reproduce the peaks in the conduction band density of states, within the experimental uncertainties.Comment: 22 Pages 4 Figure

    Subtleties on energy calculations in the image method

    Full text link
    In this pedagogical work we point out a subtle mistake that can be done by undergraduate or graduate students in the computation of the electrostatic energy of a system containing charges and perfect conductors if they naively use the image method. Specifically, we show that the naive expressions for the electrostatic energy for these systems obtained directly from the image method are wrong by a factor 1/2. We start our discussion with well known examples, namely, point charge-perfectly conducting wall and point charge-perfectly conducting sphere and then proceed to the demonstration of general results, valid for conductors of arbitrary shapes.Comment: 9 pages, 2 figures; Major change in this version: subsection added to Sect.4 (theorem generalization). Minor changes: title replaced; corrections to the English; some explanatory comments adde

    Venezuela Revisited: Foreign Investment, Technology, and Related Issues

    Get PDF
    A brief history of foreign investment in Venezuela is necessary to understand recent changes in Venezuelan foreign investment policy. The development of selected industrial sectors, including principally petroleum and mining, but also agriculture, electric power, manufacturing, banking, and insurance, has played a significant role in shaping Venezuelan foreign investment policy. The laws, policies, and their application can then be reviewed in practical terms to provide the practitioner with an understanding of the stated objectives of the host government within the context of Third World movements toward greater control over economic activities

    Addressing student models of energy loss in quantum tunnelling

    Full text link
    We report on a multi-year, multi-institution study to investigate student reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews, and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wave functions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical, and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb 10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with revisions that include an appendix with the curriculum materials discussed in the paper (4 page small group UW-style tutorial

    Mesoscopic one-way channels for quantum state transfer via the Quantum Hall Effect

    Get PDF
    We show that the one-way channel formalism of quantum optics has a physical realisation in electronic systems. In particular, we show that magnetic edge states form unidirectional quantum channels capable of coherently transporting electronic quantum information. Using the equivalence between one-way photonic channels and magnetic edge states, we adapt a proposal for quantum state transfer to mesoscopic systems using edge states as a quantum channel, and show that it is feasible with reasonable experimental parameters. We discuss how this protocol may be used to transfer information encoded in number, charge or spin states of quantum dots, so it may prove useful for transferring quantum information between parts of a solid-state quantum computer.Comment: 4 pages, 3 figure

    Continuity and the Flow of Time: A Cognitive Science Perspective

    Get PDF

    Radio-frequency discharges in Oxygen. Part 1: Modeling

    Full text link
    In this series of three papers we present results from a combined experimental and theoretical effort to quantitatively describe capacitively coupled radio-frequency discharges in oxygen. The particle-in-cell Monte-Carlo model on which the theoretical description is based will be described in the present paper. It treats space charge fields and transport processes on an equal footing with the most important plasma-chemical reactions. For given external voltage and pressure, the model determines the electric potential within the discharge and the distribution functions for electrons, negatively charged atomic oxygen, and positively charged molecular oxygen. Previously used scattering and reaction cross section data are critically assessed and in some cases modified. To validate our model, we compare the densities in the bulk of the discharge with experimental data and find good agreement, indicating that essential aspects of an oxygen discharge are captured.Comment: 11 pages, 10 figure

    Large thermal protection system panel

    Get PDF
    A protective panel for a reusable launch vehicle provides enhanced moisture protection, simplified maintenance, and increased temperature resistance. The protective panel includes an outer ceramic matrix composite (CMC) panel, and an insulative bag assembly coupled to the outer CMC panel for isolating the launch vehicle from elevated temperatures and moisture. A standoff attachment system attaches the outer CMC panel and the bag assembly to the primary structure of the launch vehicle. The insulative bag assembly includes a foil bag having a first opening shrink fitted to the outer CMC panel such that the first opening and the outer CMC panel form a water tight seal at temperatures below a desired temperature threshold. Fibrous insulation is contained within the foil bag for protecting the launch vehicle from elevated temperatures. The insulative bag assembly further includes a back panel coupled to a second opening of the foil bag such that the fibrous insulation is encapsulated by the back panel, the foil bag, and the outer CMC panel. The use of a CMC material for the outer panel in conjunction with the insulative bag assembly eliminates the need for waterproofing processes, and ultimately allows for more efficient reentry profiles
    • …
    corecore