849 research outputs found

    Comparison of SSM/I measurements to numerically-simulated cloud and precipitation during ERICA

    Get PDF
    These investigations focused essentially on the macroscale organization of cloud and precipitation which occurred during the 4th Intensive Observing Period (IOP-4) of the Experiment for Rapidly Intensifying Cyclones over the Atlantic (ERICA). This experiment, held off the East Coast of the United States and Canada during the winter of 1989, documented several episodes of rapid cyclonic storm development. Also playing a major role as validation and ground truth in these studies are Special Sensor Microwave Imager (SSM/I) retrievals of precipitable water, total liquid water and ice, generated by other Marshall Space Flight Center (MSFC) supported investigations. Model simulations produced to date suggest that, while the large-scale atmospheric dynamics was an essential driving mechanism, the role of condensation was crucial in facilitating the exceptionally rapid spinup of the cyclone and the low surface pressure. A model simulation of the precipitation rate at the time of most rapid storm intensification is shown in the accompanying figure. Heavier precipitation rates in the crescent shaped region are associated with deep convection along the leading edge of a dry intrusion behind the surface low. The majority of precipitation in the stratiform region to the northeast involved the production of ice with deposition from vapor to ice being the dominant process of growth. Some small amount of mixed phase cloudiness was present. Model condensate distributions matched well with SSM/I observations. The accompanying SSM/I imagery which delineates areas of large (greater than several hundred micron effective radius) precipitating ice over the ocean suggests that the model has done well in capturing the essential mechanisms responsible for the horizontal distribution of precipitation

    Sources of age determination errors for sablefish (Anoplopoma fimbria)

    Get PDF
    This study was undertaken to resolve problems in age determination of sablefish (Anoplopoma fimbria). Aging of this species has been hampered by poor agreement (averaging less than 45%) among age readers and by differences in assigned ages of as much as 15 years. Otoliths from fish that had been injected with oxytetracycline (OTC) and that had been at liberty for known durations were used to determine why age determinations were so difficult and to help determine the correct aging procedure. All fish were sampled from Oregon southwards, which represents the southern part of their range. The otoliths were examined with the aid of image processing. Some fish showed little or no growth on the otolith after eight months at liberty, whereas otoliths from other fish grew substantially. Some fish lay down two prominent hyaline zones within a single year, one in the summer and one in the winter. We classified the otoliths by morphological type and found that certain types are more likely to lay down multiple hyaline zones and other types are likely to lay down little or no zones. This finding suggests that some improvement could be achieved by detailed knowledge of the growth characteristics of the different types. This study suggests that it may not be possible to obtain reliable ages from sablefish otoliths. At the very least, more studies will be required to under-stand the growth of sablefish otoliths

    Observation simulation experiments with regional prediction models

    Get PDF
    Research efforts in FY 1990 included studies employing regional scale numerical models as aids in evaluating potential contributions of specific satellite observing systems (current and future) to numerical prediction. One study involves Observing System Simulation Experiments (OSSEs) which mimic operational initialization/forecast cycles but incorporate simulated Advanced Microwave Sounding Unit (AMSU) radiances as input data. The objective of this and related studies is to anticipate the potential value of data from these satellite systems, and develop applications of remotely sensed data for the benefit of short range forecasts. Techniques are also being used that rely on numerical model-based synthetic satellite radiances to interpret the information content of various types of remotely sensed image and sounding products. With this approach, evolution of simulated channel radiance image features can be directly interpreted in terms of the atmospheric dynamical processes depicted by a model. Progress is being made in a study using the internal consistency of a regional prediction model to simplify the assessment of forced diabatic heating and moisture initialization in reducing model spinup times. Techniques for model initialization are being examined, with focus on implications for potential applications of remote microwave observations, including AMSU and Special Sensor Microwave Imager (SSM/I), in shortening model spinup time for regional prediction

    The role of the sea-surface temperature distribution on numerically simulated cyclogenesis during ERICA

    Get PDF
    The goal was to quantify the extent to which a sea surface temperature (SST) front can influence cyclogenesis. The approach was to use the Drexel Limited-Area Mesoscale Prediction System (LAMPS) dynamical model to simulate cyclogenesis over various SST fields. Research during the past year focused on the development and testing of a four dimensional data assimilation (FDDA) technique within LAMPS. The technique is a continuous dynamical assimilation where forcing terms are added to the governing model equations to gradually nudge the model solution toward a gridded analysis. Here, the nudging is used as a dynamic initialization tool during a 12 hour preforecast to generate model balanced initial conditions for a subsequent 24 hour numerical prediction. Tests were performed to determine which variables to nudge and how to specify the four dimensional weighting function used to scale the nudging terms. To date, optimal results were obtained by nudging the u and v components of the wind along with the potential temperature. The weighting function ranged from 0 to 1 and varies in time as a quadratic polynomial. It was initialized at 0, reached its maximum at 9 hours into the preforecast, and fell back at 0 to 12 hours. The nudging terms are included in the model equations for all grid points except those within the model predicted oceanic boundary layer. This design attempts to confine changes imposed by the specified SST field to the oceanic boundary layer during the preforecast period

    Lunar and Martian hardware commonality

    Get PDF
    A number of different hardware elements were examined for possible Moon/Mars program commonality. These include manned landers; cargo landers, a trans-Mars injection (TMI) stage, traverse vehicles, unmanned surface rovers, habitation modules, and power supplies. Preliminary analysis indicates that it is possible to build a common two-stage manned lander. A single-stage, reusable lander may be practical for the lunar cast, but much less so for the Martian case, and commonality may therefore exist only at the subsystem level. A modified orbit transfer vehicle was examined as a potential cargo lander. Potential cargoes to various destinations were calculated for a Shuttle external tank sized TMI stage. A nuclear powered, long range traverse vehicle was conceptually designed and commonality is considered feasible. Short range, unmanned rovers can be made common without great effort. A surface habitation module may be difficult to make common due to difficulties in landing certain shapes on the Martian surface with aerobraking landers. Common nuclear power sources appear feasible. High temperature radiators appear easy to make common. Low temperature radiators may be difficult to make common. In most of these cases, Martian requirements determine the design

    Self-advancing step-tap tool

    Get PDF
    Methods and tool for simultaneously forming a bore in a work piece and forming a series of threads in said bore. In an embodiment, the tool has a predetermined axial length, a proximal end, and a distal end, said tool comprising: a shank located at said proximal end; a pilot drill portion located at said distal end; and a mill portion intermediately disposed between said shank and said pilot drill portion. The mill portion is comprised of at least two drill-tap sections of predetermined axial lengths and at least one transition section of predetermined axial length, wherein each of said at least one transition section is sandwiched between a distinct set of two of said at least two drill-tap sections. The at least two drill-tap sections are formed of one or more drill-tap cutting teeth spirally increasing along said at least two drill-tap sections, wherein said tool is self-advanced in said work piece along said formed threads, and wherein said tool simultaneously forms said bore and said series of threads along a substantially similar longitudinal axis

    Self-Advancing Step-Tap Drills

    Get PDF
    Self-advancing tool bits that are hybrids of drills and stepped taps make it possible to form threaded holes wider than about 1/2 in. (about 13 mm) without applying any more axial force than is necessary for forming narrower pilot holes. These self-advancing stepped-tap drills were invented for use by space-suited astronauts performing repairs on reinforced carbon/carbon space-shuttle leading edges during space walks, in which the ability to apply axial drilling forces is severely limited. Self-advancing stepped-tap drills could also be used on Earth for making wide holes without applying large axial forces. A self-advancing stepped-tap drill (see figure) includes several sections having progressively larger diameters, typically in increments between 0.030 and 0.060 in. (between about 0.8 and about 1.5 mm). The tip section, which is the narrowest, is a pilot drill bit that typically has a diameter between 1/8 and 3/16 in. (between about 3.2 and about 4.8 mm). The length of the pilot-drill section is chosen, according to the thickness of the object to be drilled and tapped, so that the pilot hole is completed before engagement of the first tap section. Provided that the cutting-edge geometry of the drill bit is optimized for the material to be drilled, only a relatively small axial force [typically of the order of a few pounds (of the order of 10 newtons)] must be applied during drilling of the pilot hole. Once the first tap section engages the pilot hole, it is no longer necessary for the drill operator to apply axial force: the thread engagement between the tap and the workpiece provides the axial force to advance the tool bit. Like the pilot-drill section, each tap section must be long enough to complete its hole before engagement of the next, slightly wider tap section. The precise values of the increments in diameter, the thread pitch, the rake angle of the tap cutting edge, and other geometric parameters of the tap sections must be chosen, in consideration of the workpiece material and thickness, to prevent stripping of threads during the drilling/tapping operation. A stop-lip or shoulder at the shank end of the widest tap section prevents further passage of the tool bit through the hole

    Effect of Age and Level of Education on Neurocognitive Impairment in HIV Positive Zambian Adults

    Get PDF
    Objective: Older age and lower education levels are known to be associated with worse neurocognitive (NC) performance in healthy adults, and individuals with HIV infection may experience accelerated brain/cognition aging. However, higher education may possibly protect against HIV-associated neurocognitive disorders (HAND). The aim of the current cross-sectional study was to assess the effect of age and education in an HIV-1 clade C infected adult population in urban Zambia. Method: Demographically corrected Zambian norms on a neuropsychological (NP) test battery were used to correct for normal age and education effects. The study assessed 286 HIV positive (+) males (37.1%) and females (62.9%) with a mean age of 41.35 (SD = 8.56) and mean years of education = 10.16 (SD = 2.18). A comprehensive NP test battery was used to assess cognitive domains frequently affected by HIV: attention/working memory, learning/and delayed recall, executive function, verbal fluency, processing speed, verbal and visual episodic memory, and fine motor skills. Results: In younger HIV+ Zambians, higher education evidenced protective effects against NC impairments overall, and for the specific domains of executive functions, learning and speed of information processing. Impairment scores did not support accelerated overall brain aging although the restricted age range and relative youth of our total sample may have precluded detection of such tendencies. Conclusions: The present study raises the need to investigate factors that could be implicated in the poor neurocognitive performance among the younger, less educated HIV+ individuals in Zambia.Effect of Age and Level of Education on Neurocognitive Impairment in HIV Positive Zambian AdultspublishedVersio
    • …
    corecore