2,571 research outputs found
Enabling conditions for professional development of te reo Māori teachers
The paper outlines a professional development programme for secondary school teachers of te reo Māori (under the auspices of Te Hiringa i te Mahara) conducted by a language teacher educator and an expert in Māori bilingualism and biliteracy. While the principles underpinning the programme reflect a strong task-based
orientation, the programme approached development needs for the teachers from the point of view of understanding “enabling conditions” (Franken, Rau, Ngata & Parata, n.d.) for effective language learning and teaching (see also Ellis, 2005),
rather than understanding task based learning and teaching per se. The programme drew on the current practices of the teachers and made use of epistemology of Māori language and Māori language learning. The paper presents observations from monitoring data collected during the programme supporting the claim that such an approach to the professional development of language teachers promotes a strong knowledge base and pedagogical reasoning skills (Richards, 1998), and in particular for te reo Māori teachers, fosters a sense of their own professional identity
The Performability Manager
The authors describe the performability manager, a distributed system component that contributes to a more effective and efficient use of system components and prevents quality of service (QoS) degradation. The performability manager dynamically reconfigures distributed systems whenever needed, to recover from failures and to permit the system to evolve over time and include new functionality. Large systems require dynamic reconfiguration to support dynamic change without shutting down the complete system. A distributed system monitor is needed to verify QoS. Monitoring a distributed system is difficult because of synchronization problems and minor differences in clock speeds. The authors describe the functionality and the operation of the performability manager (both informally and formally). Throughout the paper they illustrate the approach by an example distributed application: an ANSAware-based number translation service (NTS), from the intelligent networks (IN) area
Diffusion on the 3D Euclidean motion group for enhancement of HARDI data
In previous work we studied linear and nonlinear left-invariant diffusion equations on the 2D Euclidean motion group SE(2), for the purpose of crossing-preserving coherence-enhancing diffusion on 2D images. In this paper we study left-invariant diffusion on the 3D Euclidean motion group SE(3), which is useful for processing three-dimensional data. In particular, it is useful for the processing of High Angular Resolution Diffusion Imaging (HARDI) data, since these data can be considered as orientation scores directly, without the need to transform the HARDI data to a different form. In principle, all theory of the 2D case can be mapped to the 3D case. However, one of the complicating factors is that all practical 3D orientation scores are not functions on the entire group SE(3), but rather on a coset space of the group. We will show how we can still conceptually apply processing on the entire group by requiring the operations to preserve the introduced notion of alpha-right-invariance of such functions on SE(3). We introduce left-invariant derivatives and describe how to estimate tangent vectors that locally fit best to the elongated structures in the 3D orientation score. We propose generally applicable techniques for smoothing and enhancing functions on SE(3) using left-invariant diffusion on the group. Finally, we will discuss implementational issues and show a number of results for linear diffusion on artificial HARDI data
Left-invariant diffusions on R^3 x S^2 and their application to crossing-preserving smoothing on HARDI-images
In previous work we studied linear and nonlinear left-invariant diffusion equations on the 2D Euclidean motion group SE(2), for the purpose of crossing-preserving coherence-enhancing diffusion on 2D images. In this article we study left-invariant diffusion on the 3D Euclidean motion group SE(3) and its application to crossing-preserving smoothing of high angular resolution diffusion imaging (HARDI), which is a recent magnetic resonance imaging (MRI) technique for imaging water diffusion processes in fibrous tissues such as brain white matter and muscles. The linear left-invariant (convection-)diffusions are forward Kolmogorov equations of Brownian motions on the space R3 o S2 of positions and orientations embedded in SE(3) and can be solved by R3 o S2-convolution with the corresponding Green’s functions. We provide analytic approximation formulae and explicit sharp Gaussian estimates for these Green’s functions. In our design and analysis for appropriate (non-linear) convection-diffusions on HARDI-data we put emphasis on the underlying differential geometry on SE(3). We write our left-invariant diffusions in covariant derivatives on SE(3) using the Cartan-connection. This Cartan-connection has constant curvature and constant torsion, and so have the exponential curves which are the auto-parallels along which our left-invariant diffusion takes place. We provide experiments of our crossing-preserving Euclidean-invariant diffusions on artificial HARDI-data containing crossing-fibers
The Medicago genome provides insight into the evolution of rhizobial symbioses
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation1. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species2. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ~94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa’s genomic toolbo
Distribution and dynamics of Tc-99m-pertechnetate uptake in the thyroid and other organs assessed by single-photon emission computed tomography in living mice
Background: Tc-99m pertechnetate is a well-known anion, used for clinical imaging of thyroid function. This gamma emitter is transported by the sodium iodide symporter but is not incorporated into thyroglobulin. Scintigraphy using Tc-99m pertechnetate or 123 iodide represents a powerful tool for the study of sodium iodide symporter activity in different organs of living animal models. However, in many studies that have been performed in mice, the thyroid could not be distinguished from the salivary glands. In this work, we have evaluated the use of a clinically dedicated single-photon emission computed tomography (SPECT) camera for thyroid imaging and assessed what improvements are necessary for the development of this technique. Methods: SPECT of the mouse neck region, with pinhole collimation and geometric calibration, was used for the individual measurement of Tc-99m pertechnetate uptake in the thyroid and the salivary glands. Uptake in the stomach was studied by planar whole-body imaging. Uptake kinetics and biodistribution studies were performed by sequential imaging. Results: This work has shown that thyroid imaging in living mice can be performed with a SPECT camera originally built for clinical use. Our experiments indicate that Tc-99m pertechnetate uptake is faster in the thyroid than in the salivary glands and the stomach. The decrease in Tc-99m pertechnetate uptake after injection of iodide or perchlorate as competitive inhibitors was also studied. The resulting rate decreases were faster in the thyroid than in the salivary glands or the stomach. Conclusions: We have shown that a clinically dedicated SPECT camera can be used for thyroid imaging. In our experiments, SPECT imaging allowed the analysis of Tc-99m pertechnetate accumulation in individual organs and revealed differences in uptake kinetics
Cash Ethanol Cross-Hedging Opportunities
This draft is dated April 2002.Increased use of alternative fuels and low commodity prices have contributed to the recent
expansion of the US ethanol industry. As with any competitive industry, there exists some level of output price risk in the form of volatility. Yet, no actively traded ethanol futures market exists to mitigate output price risk. This study reports estimated minimum variance cross-hedge ratios between Detroit spot cash ethanol and the New York Mercantile Exchange (NYMEX) unleaded gasoline futures for 1-, 4-, 8-, 12-, 16-, 20-, 24-, and 28-week hedge horizons. The research suggests that a one-to-one cross-hedge ratio is not appropriate for some horizons
A Cascade Neural Network Architecture investigating Surface Plasmon Polaritons propagation for thin metals in OpenMP
Surface plasmon polaritons (SPPs) confined along metal-dielectric interface
have attracted a relevant interest in the area of ultracompact photonic
circuits, photovoltaic devices and other applications due to their strong field
confinement and enhancement. This paper investigates a novel cascade neural
network (NN) architecture to find the dependance of metal thickness on the SPP
propagation. Additionally, a novel training procedure for the proposed cascade
NN has been developed using an OpenMP-based framework, thus greatly reducing
training time. The performed experiments confirm the effectiveness of the
proposed NN architecture for the problem at hand
Competitive interactions are mediated in a sex-specific manner by arbuscular mycorrhiza in Antennaria dioica
Plants usually interact with other plants, and the outcome of such interaction ranges from facilitation to competition depending on the identity of the plants, including their sexual expression. Arbuscular mycorrhizal (AM) fungi have been shown to modify competitive interactions in plants. However, few studies have evaluated how AM fungi influence plant intraspecific and interspecific interactions in dioecious species.
The competitive abilities of female and male plants of Antennaria dioica were examined in a greenhouse experiment. Females and males were grown in the following competitive settings: (i) without competition, (ii) with intrasexual competition, (iii) with intersexual competition, and (iv) with interspecific competition by Hieracium pilosella – a plant with similar characteristics to A. dioica. Half of the pots were grown with Claroideoglomus claroideum, an AM fungus isolated from the same habitat as the plant material. We evaluated plant survival, growth, flowering phenology, and production of AM fungal structures.
Plant survival was unaffected by competition or AM fungi. Competition and the presence of AM fungi reduced plant biomass. However, the sexes responded differently to the interaction between fungal and competition treatments. Both intra- and interspecific competition results were sex-specific, and in general, female performance was reduced by AM colonization. Plant competition or sex did not affect the intraradical structures, extraradical hyphae, or spore production of the AM fungus.
These findings suggest that plant sexual differences affect fundamental processes such as competitive ability and symbiotic relationships with AM fungi
- …