1,540 research outputs found

    STRATEGIC ALLIANCES: CREATING LONG TERM SUCCESS

    Get PDF
    Given today's increasingly competitive environment, firms in every industry are searching for new ways to increase their competitive advantage. Many firms have realized that, due to a variety of different reasons (e.g., fast-paced technological advances), significant performance improvements cannot be achieved alone. As such, the traditional response of performance enhancement through acquisition is no longer the only option. Strategic alliances are a new alternative that enable partnering firms to combine their individual strengths while compensating for their internal resource scarcities without making the investment required for actual ownership. While interest in alliances is growing, firms are often unsure how to build and maintain successful alliances. This research examines alliances between manufacturers and their suppliers in the food and health/personal care industries to determine what factors lead to successful, long term alliances.Farm Management,

    Renal rickets, a review of the disease or syndrome

    Full text link
    Thesis (M.D.)—Boston Universit

    Finite Difference Simulations of Seismic Scattering: Implications for the Propagation of Short-Period Seismic Waves in the Crust and Models of Crustal Heterogeneity

    Get PDF
    Synthetic seismograms produced by the finite difference method are used to study the scattering of elastic and acoustic waves in two-dimensional media with random spatial variations in seismic velocity. The results of this study provide important insights about the propagation of short-period ( 5), the self-similar medium is characterized by a scattering Q that is constant with frequency, whereas theory predicts that the apparent Q in an exponential medium is proportional to frequency. These alternative models of crustal heterogeneity can thus be tested by improved measurements of the frequency dependence of crustal Q at frequencies greater than about 1 Hz, assuming that scattering is responsible for most of the attenuation at these frequencies. Measurements of the time decay of the synthetic coda waves clearly show that the single scattering model of coda decay is not appropriate in the presence of moderate amounts of scattering attenuation (scattering Q ≤ 200). In these cases, Q values derived from the coda decay rate using the single scattering theory do not correspond to the transmission Q of the medium. The cross correlation of synthetic waveforms observed for an array of receivers along the free surface is observed to be dependent on the correlation distance of the medium. The self-similar random medium proposed here for the crust produces waveform variations at high frequencies (15–30 Hz) similar to those reported for actual small-scale seismic arrays with apertures of hundreds of meters

    A finite-difference simulation of wave propagation in two-dimensional random media

    Get PDF
    A finite-difference algorithm is used to generate synthetic seismograms for waves propagating through two-dimensional random media. The media have a significant component of their material properties varying randomly over length scales smaller than the seismic wavelength and are meant to approximate the heterogeneity of the crust and upper mantle. The finite-difference technique retains all multiply scattered and diffracted waves, and also accounts for transmission losses. The synthetic seismograms clearly exhibit coda and apparent attenuation caused by scattering. For a medium with a white wavenumber spectrum of velocity fluctuations, the coda is higher frequency than the initial pulse. The apparent attenuation is greatest when the scatterer size is comparable to the seismic wavelength. The spectra of the coda generally increase in frequency as the scatterers decrease in size. Examples demonstrate how scattering can produce spectra with broad peaks and sharp fall-offs that can make the determination of the source spectra and corner frequencies of small earthquakes extremely difficult

    SUPPLY CHAIN INTEGRATION IN THE FOOD AND CONSUMER GOODS INDUSTRIES

    Get PDF
    The interorganizational structures necessary to implement and achieve the logistical performance improvements identified in the Efficient Consumer Response (ECR) initiative and related supply chain management concepts are difficult to develop. Firms continue to struggle to implement integrated programs and techniques, particularly with respect to changing operating structures, relationships, and mindsets to facilitate true supply chain integration. This research explores the logistical strategies and structures used by selected food and consumer goods firms to integrate their supply chains. It illustrates effective integration strategies and identifies critical success factors and barriers to successful ECR implementation. A framework is used to guide managers in developing the competencies essential to integrating the supply chain and to establishing the relationships necessary to operate in an ECR environment. The framework, entitled Supply Chain 2000, depicts supply chain value creation as achieving synchronization and coordination across four critical supply chain flows: product/service; market accommodation; information; and cash.Industrial Organization,

    COMPARING NEWER ORAL ANTI-PLATELETS PRASUGREL AND TICAGRELOR-A CUMULATIVE NETWORK META-ANALYSIS

    Get PDF

    MRI: Acquisition of a SQUID Magnetometer for Analysis of Advanced Materials

    Get PDF
    Technical Summary: Superconducting quantum interference device (SQUID) magnetometry is a non-destructive technique that reveals detailed information about the electron spin interactions in many types of materials. This project will involve a state-of-the-art SQUID magnetometer and Magnetic Property Measurement System (MPMS), which is a critical tool for characterizing several types of materials currently being investigated by researchers within the Laboratory for Surface Science & Technology (LASST) and other University of Maine (UMaine) laboratories. Specific measurement capabilities include DC and AC magnetic susceptibility, magnetoresistivity, van der Paaw conductivity, and Hall mobility. State-of-the-art MPMS capabilities will be especially valuable to several research programs at UMaine pertaining to (i) surface magnetism in nanoparticles, (ii) magnetic anisotropies in sedimentary rocks, (iii) electrical transport in physical and chemical sensing devices, (iv) optical properties of nanostructures in high magnetic fields, and (v) magnetic nanoparticle based biosensors. The MPMS will serve as a focal point for training undergraduates, graduate students, postdocs, and visiting scientists in magnetic materials, nanotechnology, biophysics, and materials science. This instrument is a critical tool for expanding the capacity of UMaine research into magnetic aspects of nanotechnology, biophysics, sensor technology, and materials science. As no SQUID magnetometer currently exists in the State of Maine, the instrumentation will provide access for research projects from interested parties throughout the state, including non-Ph.D. granting institutions and small Maine businesses. The instrument is relatively easy to operate and provides direct information on electron spin interactions, and thus it will be a powerful tool to teach physics and nanotechnology concepts to several different constituents participating in UMaine outreach activities, including K-12 students and teachers, the general public, under-represented groups, and industry partners.Layman Summary: Superconducting quantum interference device (SQUID) magnetometry is a non-destructive technique that reveals detailed information about the electron spin interactions in many types of materials. Knowledge of electron interactions in materials is extremely important in building the next generation of computers, electronics, and contrast agents in biological magnetic screening techniques (i.e. MRI). To gain the necessary information, a system with control over both the magnetic field strength and temperature is critical. To this end, a SQUID/Magnetic Property Measurement System (MPMS) is ideal for these measurements. This project will purchase a state-of-the-art MPMS system and will be especially valuable to several research programs at UMaine pertaining to surface magnetism in nanoparticles, magnetic anisotropies in sedimentary rocks, electrical transport in physical and chemical sensing devices, and magnetic nanoparticle based biosensors. The proposed MPMS will serve as a focal point for training undergraduates, graduate students, postdocs, and visiting scientists in magnetic materials, nanotechnology, biophysics, and materials science. As no SQUID magnetometer currently exists in the State of Maine, the instrumentation will provide access for research projects from interested parties throughout the state, including non-Ph.D. granting institutions and small Maine businesses. The instrument is relatively easy to operate and provides direct information on electron spin interactions, and thus it will be a powerful tool to teach physics and nanotechnology concepts to several different constituents participating in UMaine outreach activities, including K-12 students and teachers, the general public, under-represented groups, and industry partners

    Experiences of Female and Male Medical Students With Death, Dying, and Palliative Care: One Size Does Not Fit All

    Get PDF
    Background: Medical students learn about death, dying, and palliative care (DDPC) through formal curricular offerings and informal clinical experiences; however, the lessons learned in the clinic may be at odds with the formal curriculum. Reflective writing is a means for students to “bracket” their DDPC experiences and reconcile conflicts between the formal and informal curriculum. Objectives: The aim of this study is to compare the level of reflection demonstrated in medical students’ narratives on DDPC with other experiences and to examine the domains of professionalism that students perceive to be prevalent in their DDPC experiences. Methods: Third-year medical students submitted professionalism narratives during their internal medicine clerkship. We identified a subset of narratives related to DDPC (n = 388) and randomly selected control narratives (n = 153). We assessed the level of reflection demonstrated in the narratives using a validated rubric and analyzed the professionalism domains that students identified as relevant to their experience. Results: There was no difference in reflective level between DDPC and control narratives. Within the DDPC group, female students demonstrated higher reflection (2.24 ± 0.71) than male students (2.01 ± 0.77; P < .001). Caring, compassion and communication, and honor and integrity were prominent among DDPC narratives. More females identified caring, compassion, and communication as relevant to their DDPC experiences, whereas more males identified altruism. Conclusion: Males and females have different perceptions of DDPC experiences, and female students appear to be more deeply impacted. These findings can help clinical faculty engage students more effectively with this challenging topic

    Detection of virgin olive oil adulteration using low field unilateral NMR

    Get PDF
    The detection of adulteration in edible oils is a concern in the food industry, especially for the higher priced virgin olive oils. This article presents a low field unilateral nuclear magnetic resonance (NMR) method for the detection of the adulteration of virgin olive oil that can be performed through sealed bottles providing a non-destructive screening technique. Adulterations of an extra virgin olive oil with different percentages of sunflower oil and red palm oil were measured with a commercial unilateral instrument, the profile NMR-Mouse. The NMR signal was processed using a 2-dimensional Inverse Laplace transformation to analyze the transverse relaxation and self-diffusion behaviors of different oils. The obtained results demonstrated the feasibility of detecting adulterations of olive oil with percentages of at least 10% of sunflower and red palm oils

    Acquisition of a Multi-User Thin Film Synthesis and Processing Facility

    Get PDF
    A state-of-the-art advanced materials synthesis and processing facility focusing on the growth and fabrication of ceramic- based thin film materials will be funded with the assistance of the Academic Research Infrastructure Program. The facility will include a multi-technique thin film materials synthesis chamber equipped with a microwave plasma source, effusion cells, electron beam evaporators, magnetron sputter sources, and a Kauffman ion source. Characterization capabilities will include in-situ reflection high energy electron diffraction (RHEED), mass spectrometry for controlling growth processes, X-ray photoelectron spectroscopy (XPS), and a novel Hall probe for in- situ film characterization. Three major areas of research will be impacted significantly by the facility, namely 1) solid state micro-sensors, 2) nanomechanics of materials, and 3) surfaces and interfaces in hetero-epitaxial oxide systems. In the sensor work, which has connections with local industry, the synthesis and processing of well-defined doped metal-oxide films will be developed with the goal of understanding and controlling the molecular scale mechanisms by which surface microstructure, dopant type, and operating temperature influence sensor performance. A broad based advanced materials synthesis and processing facility for the growth and fabrication of ceramic-based thin films will be operated for the study of solid state microsensors based on metal-oxide ceramic films. The nanomechanics of these ceramic thin films will be studied, as well as the surfaces and interfaces occurring in heteroepitaxial oxide systems
    • …
    corecore