8,303 research outputs found

    Muon-spin relaxation and heat capacity measurements on the magnetoelectric and multiferroic pyroxenes LiFeSi2O6 and NaFeSi2O6

    Full text link
    The results of muon-spin relaxation and heat capacity measurements on two pyroxene compounds LiFeSi2O6 and NaFeSi2O6 demonstrate that despite their underlying structural similarity the magnetic ordering is considerably different. In LiFeSi2O6 a single muon precession frequency is observed below TN, consistent with a single peak at TN in the heat capacity and a commensurate magnetic structure. In applied magnetic fields the heat capacity peak splits in two. In contrast, for natural NaFeSi2O6, where multiferroicity has been observed in zero-magnetic-field, a rapid Gaussian depolarization is observed showing that the magnetic structure is more complex. Synthetic NaFeSi2O6 shows a single muon precession frequency but with a far larger damping rate than in the lithium compound. Heat capacity measurements reproduce the phase diagrams previously derived from other techniques and demonstrate that the magnetic entropy is mostly associated with the build up of correlations in the quasi-one-dimensional Fe3+ chains

    Book Reviews

    Get PDF

    Empirical wind model for the middle and lower atmosphere. Part 1: Local time average

    Get PDF
    The HWM90 thermospheric wind model was revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical conditions. Gradient winds from CIRA-86 plus rocket soundings, incoherent scatter radar, MF radar, and meteor radar provide the data base and are supplemented by previous data driven model summaries. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and longitude (stationary wave 1). The model represents a smoothed compromise between the data sources. Although agreement between various data sources is generally good, some systematic differences are noted, particularly near the mesopause. Root mean square differences between data and model are on the order of 15 m/s in the mesosphere and 10 m/s in the stratosphere for zonal wind, and 10 m/s and 4 m/s, respectively, for meridional wind

    About direct Dark Matter detection in Next-to-Minimal Supersymmetric Standard Model

    Get PDF
    Direct dark matter detection is considered in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). The effective neutralino-quark Lagrangian is obtained and event rates are calculated for the Ge-73 isotope. Accelerator and cosmological constraints on the NMSSM parameter space are included. By means of scanning the parameter space at the Fermi scale we show that the lightest neutralino could be detected in dark matter experiments with sizable event rate.Comment: latex, 12 pages, 2 ps-figures; extra LEP constraint is included, extra figure is added, recorrected version, resubmitted to Phys.Rev.

    Climatology and Modeling of Quasi-monochromatic Atmospheric Gravity Waves Observed over Urbana Illinois

    Get PDF
    From analyzing nine months of airglow imaging observations of atmospheric gravity waves (AGWs) over Adelaide, Australia (35°S) [Walterscheid et al., 1999] have proposed that many of the quasi-monochromatic waves seen in the images were primarily thermally ducted. Here are presented 15 months of observations, from February 1996 to May 1997, for AGW frequency and propagation direction from a northern latitude site, Urbana Illinois (40°N). As Adelaide, Urbana is geographically distant from large orographic features. Similar to what was found in Adelaide, the AGWs seem to originate from a preferred location during the time period around summer solstice. In conjunction with these airglow data there exists MF radar data to provide winds in the 90 km region and near-simultaneous lidar data which provide a temperature climatology. The temperature data have previously been analyzed by States and Gardner [2000]. The temperature and wind data are used here in a full wave model analysis to determine the characteristics of the wave ducting and wave reflection during the 15 month observation period. This model analysis is applied to this and another existing data set recently described by Nakamura et al. [1999]. It is shown that the existence of a thermal duct around summer solstice can plausibly account for our observations. However, the characteristics of the thermal duct and the ability of waves to be ducted is also greatly dependent on the characteristics of the background wind. A simple model is constructed to simulate the trapping of these waves by such a duct. It is suggested that the waves seen over Urbana originate no more than a few thousand kilometers from the observation site

    Relationships Among Stress Measures, Risk Factors, and Inflammatory Biomarkers in Law Enforcement Officers

    Get PDF
    Law enforcement officers suffer higher morbidity and mortality rates from all causes than the general population. Cardiovascular disease (CVD) accounts for a significant portion of the excess illness, with a reported prevalence as high as 1.7 times that of the general population. To determine which occupational hazards cause this increased risk and morbidity, it is imperative to study law enforcement officers before they retire. The long-range goal of our research is to reduce the incidence of CVD-related illness and death among aging law enforcement officers. The purpose of the present study was to measure pro- and anti-atherogenic inflammatory markers in blood samples from law enforcement officers (n = 71) and determine what types of occupation-related stress correlate with differences in these markers. For each outcome variable of interest, we developed separate regression models. Two groups of potential predictors were examined for inclusion in the models. Selected measures of stress were examined for inclusion in the models, in addition to general covariates, such as gender, ethnicity, years in law enforcement, and body mass index. Our results revealed statistically significant relationships between several physiologic variables and measures of stress

    Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts

    Get PDF
    A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts

    Frictional quantum decoherence

    Full text link
    The dynamics associated with a measurement-based master equation for quantum Brownian motion are investigated. A scheme for obtaining time evolution from general initial conditions is derived. This is applied to analyze dissipation and decoherence in the evolution of both a Gaussian and a Schr\"{o}dinger cat initial state. Dependence on the diffusive terms present in the master equation is discussed with reference to both the coordinate and momentum representations.Comment: 18 pages, 7 figure

    Compactification near and on the light front

    Get PDF
    We address problems associated with compactification near and on the light front. In perturbative scalar field theory we illustrate and clarify the relationships among three approaches: (1) quantization on a space-like surface close to a light front; (2) infinite momentum frame calculations; and (3) quantization on the light front. Our examples emphasize the difference between zero modes in space-like quantization and those in light front quantization. In particular, in perturbative calculations of scalar field theory using discretized light cone quantization there are well-known ``zero-mode induced'' interaction terms. However, we show that they decouple in the continuum limit and covariant answers are reproduced. Thus compactification of a light-like surface is feasible and defines a consistent field theory.Comment: 24 pages, 4 figure
    corecore