597 research outputs found

    PARTICLE CLUSTERS IN FLUIDIZED BEDS

    Get PDF
    Accurately predicting the entrainment rate is important in designing a commercial fluidized bed. However, most correlations fall short in providing an accurate prediction of the entrainment rate. Many correlations assume that smaller particles have a higher entrainment rate than larger particles; but, this is often not the case. Smaller particles can, and often do, have lower effective entrainment rates than larger particles. This has been presumed from several different experiments. In one case, the entrainment rate of FCC catalyst fines was measured at different fluidized bed heights and found that higher entrainment fluxes were observed at lower bed heights (i.e., higher disengaging heights). In a second case, it was found in a batch entrainment test that with an initial high concentration the fines level in the entrainment flux was very low. As the fines were gradually elutriated away, the entrainment flux increased dramatically. Following a dramatic increase to a maximum, the entrainment flux then exhibited the classical batch exponential decay as the fines were elutriated from the fluidized bed. Recently, high speed video of particles in a fluidized bed freeboard was able to image and track large clusters of particles in the range of 200 microns to 1000 microns when the bed material had a mean particle size of only 25 microns. All of these findings suggests that fine particles in many materials are clumping or clustering. This increases their effective particle diameter which reduces the entrainment rate. The clumps appear to be formed in the fluidized bed, and are ejected into the freeboard. High-speed videos obtained using observations through a borescope inserted into a fluidized bed at PSRI have confirmed the presence of clusters in fluidized beds. Such a phenomenon has many implications regarding how entrainment may be influenced by fines level, bed height, baffles, jet velocity at the distributor, etc

    A Logic with Reverse Modalities for History-preserving Bisimulations

    Full text link
    We introduce event identifier logic (EIL) which extends Hennessy-Milner logic by the addition of (1) reverse as well as forward modalities, and (2) identifiers to keep track of events. We show that this logic corresponds to hereditary history-preserving (HH) bisimulation equivalence within a particular true-concurrency model, namely stable configuration structures. We furthermore show how natural sublogics of EIL correspond to coarser equivalences. In particular we provide logical characterisations of weak history-preserving (WH) and history-preserving (H) bisimulation. Logics corresponding to HH and H bisimulation have been given previously, but not to WH bisimulation (when autoconcurrency is allowed), as far as we are aware. We also present characteristic formulas which characterise individual structures with respect to history-preserving equivalences.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    The antiferromagnetic phi4 Model, II. The one-loop renormalization

    Full text link
    It is shown that the four dimensional antiferromagnetic lattice phi4 model has the usual non-asymptotically free scaling law in the UV regime around the chiral symmetrical critical point. The theory describes a scalar and a pseudoscalar particle. A continuum effective theory is derived for low energies. A possibility of constructing a model with a single chiral boson is mentioned.Comment: To appear in Phys. Rev.

    Concurrent and distinct transcription and translation of transforming growth factor-beta type I and type II receptors in rodent embryogenesis

    Get PDF
    The transforming growth factor-betas (TGF-betas) are multifunctional regulatory polypeptides that play a crucial role in many cell processes and function through a set of cell surface protein receptors that includes TGF-beta type I (RI) and type II (RII). The present study reports a comprehensive comparison of the patterns of expression of TGF-beta RI and RII proteins and mRNAs in the developing mouse embryo using immunohistochemical and in situ hybridization analyses. Although widespread expression of both TGF-beta receptors was detected throughout the embryonic development period so that many similarities occur in localization of the TGF-beta receptors, TGF-beta RI was expressed in a well-defined, non-uniform pattern that was different in many respects from that of TGF-beta RII. Whereas higher levels of TGF-beta RI compared to TGF-beta RII were detected in some tissues of the embryo at the beginning of organogenesis, the level of TGF-beta RII increased more dramatically than that of TGF-beta RI during late organogenesis; this was especially true in many neural structures where TGF-beta RI and RII were comparable by day 16. The lung, kidney and intestine, in which epithelial-mesenchymal interactions occur, showed a complex pattern of TGF-beta RI and Rll expression. Additionally, northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) amplification showed non-uniform expression of the transcripts for TGF-beta RI and RII in embryonic and adult mouse and rat tissues. These data show that regulation of TGF-beta1 RI and RII occurs concurrently, but distinctly, in a spatial and temporal manner in rodent embryogenesis which may allow control of signal transduction of TGF-beta during development

    Dual PI3K/mTOR inhibitor NVP-BEZ235 enhances radiosensitivity of head and neck squamous cell carcinoma (HNSCC) cell lines due to suppressed Double-Strand Break (DSB) repair by non-homologous end joining

    Get PDF
    The PI3K/Akt/mTOR pathway is frequently altered in human papillomavirus (HPV)-positive and negative squamous cell carcinoma of the head and neck (HNSCC) and overstimulation is associated with poor prognosis. PI3K drives Akt activation and constitutive signaling acts pro-proliferative, supports cell survival, DNA repair, and contributes to radioresistance. Since the small molecule NVP-BEZ235 (BEZ235) is a potent dual inhibitor of this pathway, we were interested whether BEZ235 could be an efficient radiosensitizer. The 50 nM BEZ235 was found to abrogate endogenous and irradiation-induced phosphorylation of Akt (Ser473). The anti-proliferative capacity of the drug resulted in an increase in G1-phase cells. Repair of radiation-induced DNA double-strand breaks (DSBs) was strongly suppressed. Reduction in DSB repair was only apparent in G1- but not in G2-phase cells, suggesting that BEZ235 primarily affects non-homologous end joining. This finding was confirmed using a DSB repair reporter gene assay and could be attributed to an impaired phosphorylation of DNA-PKcs (S2056). Cellular radiosensitivity increased strongly after BEZ235 addition in all HNSCC cell lines used, especially when irradiated in the G0 or G1 phase. Our data indicate that targeting the PI3K/Akt/mTOR pathway by BEZ235 with concurrent radiotherapy may be considered an effective strategy for the treatment of HNSCC, regardless of the HPV and Akt status

    Quark Potential in a Quark-Meson Plasma

    Full text link
    We investigate quark potential by considering meson exchanges in the two flavor Nambu--Jona-Lasinio model at finite temperature and density. There are two kinds of oscillations in the chiral restoration phase, one is the Friedel oscillation due to the sharp quark Fermi surface at high density, and the other is the Yukawa oscillation driven by the complex meson poles at high temperature. The quark-meson plasma is strongly coupled in the temperature region 1≤T/Tc≲31\le T/T_c \lesssim 3 with TcT_c being the critical temperature of chiral phase transition. The maximum coupling in this region is located at the critical point.Comment: 8 pages and 8 figure

    Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model

    Get PDF
    We study the solutions of the gap equation, the thermodynamic potential and the chiral susceptibility in and beyond the chiral limit at finite chemical potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation between the chiral susceptibility and the thermodynamic potential in the NJL model. We find that the chiral susceptibility is a quantity being able to represent the furcation of the solutions of the gap equation and the concavo-convexity of the thermodynamic potential in NJL model. It indicates that the chiral susceptibility can identify the stable state and the possibility of the chiral phase transition in NJL model.Comment: 21 pages, 6 figures, misprints are correcte

    Manganites at Quarter Filling: Role of Jahn-Teller Interactions

    Full text link
    We have analyzed different correlation functions in a realistic spin-orbital model for half-doped manganites. Using a finite-temperature diagonalization technique the CE phase was found in the charge-ordered phase in the case of small antiferromagnetic interactions between t2gt_{2g} electrons. It is shown that a key ingredient responsible for stabilization of the CE-type spin and orbital-ordered state is the cooperative Jahn-Teller (JT) interaction between next-nearest Mn+3^{+3} neighbors mediated by the breathing mode distortion of Mn+4^{+4} octahedra and displacements of Mn+4^{+4} ions. The topological phase factor in the Mn-Mn hopping leading to gap formation in one-dimensional models for the CE phase as well as the nearest neighbor JT coupling are not able to produce the zigzag chains typical for the CE phase in our model.Comment: 16 pages with 16 figures, contains a more detailed parameter estimate based on the structural data by Radaelli et al. (accepted for publication in Phys. Rev. B

    Force unfolding kinetics of RNA using optical tweezers. II. Modeling experiments

    Full text link
    By exerting mechanical force it is possible to unfold/refold RNA molecules one at a time. In a small range of forces, an RNA molecule can hop between the folded and the unfolded state with force-dependent kinetic rates. Here, we introduce a mesoscopic model to analyze the hopping kinetics of RNA hairpins in an optical tweezers setup. The model includes different elements of the experimental setup (beads, handles and RNA sequence) and limitations of the instrument (time lag of the force-feedback mechanism and finite bandwidth of data acquisition). We investigated the influence of the instrument on the measured hopping rates. Results from the model are in good agreement with the experiments reported in the companion article (1). The comparison between theory and experiments allowed us to infer the values of the intrinsic molecular rates of the RNA hairpin alone and to search for the optimal experimental conditions to do the measurements. We conclude that long handles and soft laser traps represent the best conditions to extract rate estimates that are closest to the intrinsic molecular rates. The methodology and rationale presented here can be applied to other experimental setups and other molecules.Comment: PDF file, 32 pages including 9 figures plus supplementary materia

    Menus for Feeding Black Holes

    Full text link
    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher
    • …
    corecore