158 research outputs found

    A New View on the Composition of Dust in the Solar System : Results from the Cassini Dust Detector

    Get PDF
    In this work the time-of-flight mass spectra of cations, extracted from the plasma created by highvelocity particle impacts onto the Cassini dust detector, are evaluated. The composition of six different dust species is inferred. During Cassini’s cruise, spectra of iron-rich interplanetary dust were obtained. Subsequently two fast hypervelocity stream particle species, originating from the Jovian and Saturnian systems were detected. For the Jovian streams sodium chloride (NaCl) was identified as the major particle constituent, accompanied by sulfurous as well as potassium-bearing components. This implies that the vast majority of the observed Jovian stream particles originate from the volcanically active Jovian satellite Io. An alkali salt condensation of gases inside Pele-type volcanic plumes is proposed as the source mechanism. For the Saturnian stream species the source region is the planet’s ring system. Silicon is identified as the main particle component, indicating that the tiny particles are probably remnants of once larger icy particles populating the outermost tenuous Saturnian ring, the E ring. Following Cassini’s Saturn orbit insertion, three further spectral types have been discovered (during crossings of the E ring), associated with different particle populations. The bulk material of Type I and Type II particles is water ice. In contrast Type III dust exhibits a mineral composition. Type I spectra imply pure water ice particles, whereas in Type II spectra organic compounds and/or silicate minerals are identified as impurities within the icy particles. This reveals the cryo-volcanic plumes of the moon Enceladus as the origin of Type II particles, which implies a dynamic interaction of Enceladus’ rocky core with liquid water. The non-water Type III dust species exhibits an iron-rich composition, probably in the form of pyrite, oxides and/or hydroxides. A magnesium-rich siliceous subspecies is likely. Retrograde or unbound orbits are in best agreement with the Type III observations

    Organic matter in interstellar dust lost at the approach to the heliosphere: Exothermic chemical reactions of free radicals ignited by the Sun

    Full text link
    Aims. We tackle the conundrums of organic materials missing from interstellar dust when measured inside the Solar System, while undoubtedly existing in the local interstellar cloud (LIC), which surrounds the Solar System. Methods. We present a theoretical argument that organic compounds sublimate almost instantaneously by exothermic reactions, when solar insolation triggers the recombination of free radicals or the rearrangement of carbon bonds in the compounds. Results. It turns out that the triggering temperature lies in the range of 20−-50 K by considering that sublimation of organic materials takes place beyond the so-called filtration region of interstellar neutral atoms. We find that in-situ measurements of LIC dust in the Solar System result in an overestimate for the gas-to-dust mass ratio of the LIC, unless the sublimation of organic materials is taken into account. We also find that previous measurements of interstellar pickup ions have determined the total elemental abundances of gas and organic materials, instead of interstellar gas alone. Conclusions. We conclude that LIC organic matter suffers from sublimation en route to the heliosphere, implying that our understanding of LIC dust from space missions is incomplete. Since space missions inside the orbit of Saturn cannot give any information on the organic substances of LIC dust, one must await a future exploration mission to the inner edge of the Oort cloud for a thorough understanding of organic substances in the LIC. Once our model for the sublimation of interstellar organic matter by exothermic chemical reactions of free radicals is confirmed, the hypothesis of panspermia from the diffuse interstellar medium is ruled out.Comment: 9 pages, 6 figures, to appear in Astronomy & Astrophysic

    Evolution of Thrace Macula on Europa: Strike-Slip Tectonic Control and Identification of the Youngest Terrains

    Get PDF
    Chaos terrains are geologically young and extensively disrupted surface features of Europa, thought to be an expression of the subsurface ocean interacting with the surface. The most prominent examples of this terrain on Europa are Conamara Chaos, and Thera and Thrace Maculae, all prime targets for the upcoming JUICE and Europa Clipper missions to assess the astrobiological potential of Europa. Of the three features, Thrace Macula is currently the least studied and understood. It intersects both Agenor Linea to the north and Libya Linea to the south, two important regional-scale bands whose interaction with Thrace is yet to be fully unraveled, especially in terms of their relative ages of emplacement and activity. Using Galileo Solid State Imager data and Digital Terrain Models, we conducted detailed structural mapping and terrain analysis to develop a novel hypothesis on the mechanisms involved in the study area. We find that Thrace Macula is bordered along most sides by preexisting strike-slip faults that have constrained its emplacement and areal distribution. We determine a sequence of events in the area involving the formation of Agenor Linea, followed by that of Libya Linea first and Thrace Macula later, and ultimately by strike-slip tectonic activity likely driven by Libya Linea, that displaced a portion of Thrace Macula. Therefore, Thrace's subsurface material, uprising along faults postdating its formation, represents the freshest possible that could be sampled by future spacecraft in this region, a major consideration for the upcoming Europa Clipper mission

    Ménec Fossae on Europa: A Strike-Slip Tectonics Origin Above a Possible Shallow Water Reservoir

    Get PDF
    Faults and fractures may emplace fresh material onto Europa's surface, originating from shallow reservoirs within the ice shell or directly from the subsurface ocean. Ménec Fossae is a region of particular interest as it displays the interaction of several geological features, including bands, double ridges, chaotic terrains, and fossae, within a relatively small area. These features might affect the emplacement of buried material and subsequent exposure of fresh volatiles, prime targets for the upcoming JUICE and Europa Clipper missions in order to assess Europa's astrobiological potential. Previous studies have already revealed that a deep central trough is present at Ménec Fossae, flanked by several subparallel minor troughs and by a few asymmetrical scarps with lobate planforms. The presence of such features has motivated this study, given its potential to provide clear indications on the tectonic regime involved. Through detailed geomorphological-structural mapping using Galileo Solid State Imager data and terrain analysis on Digital Terrain Models, we could develop a novel hypothesis on the formation mechanisms that might have been involved in the study area. We propose that Ménec Fossae has been shaped by transtensional (strike-slip with an extensional component) tectonic activity, as indicated by the orientation and relationship of the tectonic features present. Likely, such transtensional tectonism occurred above or associated with shallow subsurface water, consistent with the overall morphology and topography of the study area and the presence of chaotic terrains and double ridges. These results strengthen the case for widely distributed shallow water reservoirs within Europa's ice shell

    Linking meteorites to their asteroid parent bodies: The capabilities of dust analyzer instruments during asteroid flybys

    Get PDF
    Linking meteorites to their asteroid parent bodies remains an outstanding issue. Space-based dust characterization using impact ionization mass spectrometry is a proven technique for the compositional analysis of individual cosmic dust grains. Here we investigate the feasibility of determining asteroid compositions via cation mass spectrometric analyses of their dust ejecta clouds during low (7–9 km s−1) velocity spacecraft flybys. At these speeds, the dust grain mass spectra are dominated by easily ionized elements and molecular species. Using known bulk mineral volume abundances, we show that it is feasible to discriminate the common meteorite classes of carbonaceous chondrites, ordinary chondrites, and howardite–eucrite–diogenite achondrites, as well as their subtypes, relying solely on the detection of elements with ionization efficiencies of ≤700 or ≤800 kJ mol−1, applicable to low (~7 km s−1) and intermediate (~9 km s−1) flyby speed scenarios, respectively. Including the detection of water ion groups enables greater discrimination between certain meteorite types, and flyby speeds ≥10 km s−1 enhance the diagnostic capabilities of this technique still further. Although additional terrestrial calibration is required, this technique may allow more unequivocal asteroid-meteorite connections to be determined by spacecraft flybys, emphasizing the utility of dust instruments on future asteroid missions

    Experimental and simulation efforts in the astrobiological exploration of exooceans

    Get PDF
    The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus’ plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core

    Using Dust from Asteroids as Regolith Microsamples

    Get PDF
    More robust links need to be forged between meteorites and their parent bodies to understand the composition, diversity and distribution of the asteroids. A major link can be sample analysis of the parent body material and comparison with meteorite data. Dust is present around all airless bodies, generated by micrometeorite impact into their airless surfaces, which in turn lofts regolith particles into a "cloud" around the body. The composition, flux, and size distribution of dust particles can provide insight into the geologic evolution of airless bodies. For example, the Cassini Cosmic Dust Analyzer detected salts and minerals emitted by plumes at Enceladus, evidence for a subsurface ocean with a silicate seafloor. Dust analysis instruments may enable future missions to obtain elemental, isotopic and mineralogical composition of regolith particles without returning the samples to terrestrial laboratories

    Complementary Mass Spectral Analysis of Isomeric O-bearing Organic Compounds and Fragmentation Differences through Analog Techniques for Spaceborne Mass Spectrometers

    Get PDF
    Mass spectrometers on board spacecraft typically use either impact ionization or electron ionization (EI) as ion sources. Understanding the similarities and differences in the spectral signatures and fragmentation patterns produced by different techniques in mass spectrometry could elucidate the composition of organic compounds. Here we present a comparison between the mass spectra obtained through laser-induced liquid beam ion desorption (LILBID; proven to simulate the impact ionization mass spectra of ice grains) and EI mass spectra of pairs of low-mass, isomeric aldehydes and ketones. Our comparison confirms that EI produces more fragmentation of carbonyl compounds, particularly aldehydes, than LILBID. We find protonated molecular ions [M+H]+ in LILBID but molecular ions [M]+ in EI spectra. From the evaluated species, LILBID generally produces oxygen-carrying fragment ions (e.g., [CHO]+ and [C2H3O]+) in the mass ranges 26–30 and 39–44 u, while in EI, most ions in these ranges correspond to hydrocarbon fragments. The LILBID spectra additionally show mostly protonated oxygen-bearing fragments [CH3O]+ and [C2H5O]+ at m/z 31 and 45, less commonly observed in EI spectra. We observe a decrease in the relative intensities of cation fragment mass lines between m/z 26 and 33 and an increase between m/z 39 and 45, with an increasing carbon number for ketones and aldehydes with LILBID and EI, respectively. Our study provides a basis for complementary compositional analysis to identify the structural properties of organic species in a space environment using different spaceborne mass spectrometers (e.g., SUrface Dust Analyzer and MAss Spectrometer for Planetary EXploration) on board NASA’s future Europa Clipper space mission

    Abundant phosphorus expected for possible life in Enceladus’s ocean

    Get PDF
    Saturn’s moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean–seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42−), and total dissolved inorganic P could reach 10−7 to 10−2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10−10 mol/kg H2O from previous estimates and close to or higher than ∼10−6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus’s ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability
    • …
    corecore