2,130 research outputs found

    Massive Black Holes in Star Clusters. II. Realistic Cluster Models

    Get PDF
    We have followed the evolution of multi-mass star clusters containing massive central black holes through collisional N-body simulations done on GRAPE6. Each cluster is composed of between 16,384 to 131,072 stars together with a black hole with an initial mass of M_BH=1000 Msun. We follow the evolution of the clusters under the combined influence of two-body relaxation, stellar mass-loss and tidal disruption of stars. The (3D) mass density profile follows a power-law distribution \rho \sim r^{-\alpha} with slope \alpha=1.55. This leads to a constant density profile of bright stars in projection, which makes it highly unlikely that core collapse clusters contain intermediate-mass black holes (IMBHs). Instead globular clusters containing IMBHs can be fitted with standard King profiles. The disruption rate of stars is too small to form an IMBH out of a M_BH \approx 50 Msun progenitor black hole, unless a cluster starts with a central density significantly higher than what is seen in globular clusters. Kinematical studies can reveal 1000 Msun IMBHs in the closest clusters. IMBHs in globular clusters are only weak X-ray sources since the tidal disruption rate of stars is low and the star closest to the IMBH is normally another black hole. For globular clusters, dynamical evolution can push compact stars near the IMBH to distances small enough that they become detectable through gravitational radiation. If 10% of all globular clusters contain IMBHs, extragalactic globular clusters could be one of the major sources for {\it LISA}. (abridged)Comment: 20 pages, 16 figures, ApJ in pres

    Four-Body Effects in Globular Cluster Black Hole Coalescence

    Get PDF
    In the high density cores of globular clusters, multibody interactions are expected to be common, with the result that black holes in binaries are hardened by interactions. It was shown by Sigurdsson & Hernquist (1993) and others that 10 solar mass black holes interacting exclusively by three-body encounters do not merge in the clusters themselves, because recoil kicks the binaries out of the clusters before the binaries are tight enough to merge. Here we consider a new mechanism, involving four-body encounters. Numerical simulations by a number of authors suggest that roughly 20-50% of binary-binary encounters will eject one star but leave behind a stable hierarchical triple. If the orbital plane of the inner binary is strongly tilted with respect to the orbital plane of the outer object, a secular Kozai resonance, first investigated in the context of asteroids in the Solar System, can increase the eccentricity of the inner body significantly. We show that in a substantial fraction of cases the eccentricity is driven to a high enough value that the inner binary will merge by gravitational radiation, without a strong accompanying kick. Thus the merged object remains in the cluster; depending on the binary fraction of black holes and the inclination distribution of newly-formed hierarchical triples, this mechanism may allow massive black holes to accumulate through successive mergers in the cores of globular clusters. It may also increase the likelihood that stellar-mass black holes in globular clusters will be detectable by their gravitational radiation.Comment: Submitted to ApJ Letters (includes emulateapj.sty

    Population of neutron unbound states via two-proton knockout reactions

    Full text link
    The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited unbound states of 23O and 24O. In 23O a state at an excitation energy of 2.79(13) MeV was observed. There was no conclusive evidence for the population of excited states in 24O.Comment: 6 pages, 3 figures, Proc. 9th Int. Spring Seminar on Nucl. Phys. Changing Facets of Nuclear Structure, May 20-34, 200

    Search for unbound 15Be states in the 3n+12Be channel

    Get PDF
    15Be is expected to have low-lying 3/2+ and 5/2+ states. A first search did not observe the 3/2+ [A. Spyrou et al., Phys. Rev. C 84, 044309 (2011)], however, a resonance in 15Be was populated in a second attempt and determined to be unbound with respect to 14Be by 1.8(1) MeV with a tentative spin-parity assignment of 5/2+ [J. Snyder et al., Phys. Rev. C 88, 031303(R) (2013)]. Search for the predicted 15Be 3/2+ state in the three-neutron decay channel. A two-proton removal reaction from a 55 MeV/u 17C beam was used to populate neutron-unbound states in 15Be. The two-, three-, and four-body decay energies of the 12Be + neutron(s) detected in coincidence were reconstructed using invariant mass spectroscopy. Monte Carlo simulations were performed to extract the resonance and decay properties from the observed spectra. The low-energy regions of the decay energy spectra can be described with the first excited unbound state of 14Be (E_x=1.54 MeV, E_r=0.28 MeV). Including a state in 15Be that decays through the first excited 14Be state slightly improves the fit at higher energies though the cross section is small. A 15Be component is not needed to describe the data. If the 3/2+ state in 15Be is populated, the decay by three-neutron emission through 14Be is weak, less than or equal to 11% up to 4 MeV. In the best fit, 15Be is unbound with respect to 12Be by 1.4 MeV (unbound with respect to $14Be by 2.66 MeV) with a strength of 7%.Comment: 6 pages, 5 figures, accepted in Physical Review

    Energy distributions from three-body decaying many-body resonances

    Get PDF
    We compute energy distributions of three particles emerging from decaying many-body resonances. We reproduce the measured energy distributions from decays of two archetypal states chosen as the lowest 0+0^{+} and 1+1^{+}-resonances in 12^{12}C populated in ÎČ\beta-decays. These states are dominated by sequential, through the 8^{8}Be ground state, and direct decays, respectively. These decay mechanisms are reflected in the ``dynamic'' evolution from small, cluster or shell-model states, to large distances, where the coordinate or momentum space continuum wavefunctions are accurately computed.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review Letter

    Gravitational Radiation from Intermediate-Mass Black Holes

    Full text link
    Recent X-ray observations of galaxies with ROSAT, ASCA, and Chandra have revealed numerous bright off-center point sources which, if isotropic emitters, are likely to be intermediate-mass black holes, with hundreds to thousands of solar masses. The origin of these objects is under debate, but observations suggest that a significant number of them currently reside in young high-density stellar clusters. There is also growing evidence that some Galactic globular clusters harbor black holes of similar mass, from observations of stellar kinematics. In such high-density stellar environments, the interactions of intermediate-mass black holes are promising sources of gravitational waves for ground-based and space-based detectors. Here we explore the signal strengths of binaries containing intermediate-mass black holes or stellar-mass black holes in dense stellar clusters. We estimate that a few to tens per year of these objects will be detectable during the last phase of their inspiral with the advanced LIGO detector, and up to tens per year will be seen during merger, depending on the spins of the black holes. We also find that if these objects reside in globular clusters then tens of sources will be detectable with LISA from the Galactic globular system in a five year integration, and similar numbers will be detectable from more distant galaxies. The signal strength depends on the eccentricity distribution, but we show that there is promise for strong detection of pericenter precession and Lense-Thirring precession of the orbital plane. We conclude by discussing what could be learned about binaries, dense stellar systems, and strong gravity if such signals are detected.Comment: Minor changes, accepted by ApJ (December 10, 2002

    Exploring Neutron-Rich Oxygen Isotopes with MoNA

    Full text link
    The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24O, a resonance at 45(2) keV above the neutron separation energy was observed in 23O.Comment: 6 pages, 4 Figures, submitted to Proc. Int. Conf. on Proton Emitting Nuclei and Related Topics, PROCON0

    The cost of procuring deceased donor kidneys: Evidence from OPO cost reports 2013-2017

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154616/1/ajt15669_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154616/2/ajt15669.pd

    Neutron knockout of 12Be populating neutron-unbound states in 11Be

    Get PDF
    Neutron-unbound resonant states of 11Be were populated in neutron knock-out reactions from 12Be and identified by 10Be-n coincidence measurements. A resonance in the decay-energy spectrum at 80(2) keV was attributed to a highly excited unbound state in 11Be at 3.949(2) MeV decaying to the 2+ excited state in 10Be. A knockout cross section of 15(3) mb was inferred for this 3.949(2) MeV state suggesting a spectroscopic factor near unity for this 0p3/2- level, consistent with the detailed shell model calculations.Comment: 5 pages, 2 figures \pacs{29.38.Db, 29.30.Hs, 24.50.+g, 21.10.Pc, 21.10.Hw, 27.20.+n} \keywords{neutron decay spectroscopy, neutron-unbound states in 11Be
    • 

    corecore