3,737 research outputs found

    Flight measured and calculated exhaust jet conditions for an F100 engine in an F-15 airplane

    Get PDF
    The exhaust jet conditions, in terms of temperature and Mach number, were determined for a nozzle-aft end acoustic study flown on an F-15 aircraft. Jet properties for the F100 EMD engines were calculated using the engine manufacturer's specification deck. The effects of atmospheric temperature on jet Mach number, M10, were calculated. Values of turbine discharge pressure, PT6M, jet Mach number, and jet temperature were calculated as a function of aircraft Mach number, altitude, and power lever angle for the test day conditions. At a typical test point with a Mach number of 0.9, intermediate power setting, and an altitude of 20,000 ft, M10 was equal to 1.63. Flight measured and calculated values of PT6M were compared for intermediate power at altitudes of 15500, 20500, and 31000 ft. It was found that at 31000 ft, there was excellent agreement between both, but for lower altitudes the specification deck overpredicted the flight data. The calculated jet Mach numbers were believed to be accurate to within 2 percent

    Seasonal variability in ichthyoplankton abundance and assemblage composition in the northern Gulf of Mexico off Alabama

    Get PDF
    Multiyear ichthyoplankton surveys used to monitor larval fish seasonality, abundance, and assemblage structure can provide early indicators of regional ecosystem changes. Numerous ichthyoplankton surveys have been conducted in the northern Gulf of Mexico, but few have had high levels of temporal resolution and sample replication. In this study, ichthyoplankton samples were collected monthly (October 2004–October 2006) at a single station off the coast of Alabama as part of a long-term biological survey. Four seasonal periods were identified from observed and historic water temperatures, including a relatively long (June–October) “summer” period (water temperature >26°C). Fish egg abundance, total larval abundance, and larval taxonomic diversity were significantly related to water temperature (but not salinity), with peaks in the spring, spring–summer, and summer periods, respectively. Larvae collected during the survey represented 58 different families, of which engraulids, sciaenids, carangids, and clupeids were the most prominent. The most abundant taxa collected were unidentified engraulids (50%), sand seatrout (Cynoscion arenarius, 7.5%), Atlantic bumper (Chloroscombrus chrysurus, 5.4%), Atlantic croaker (Micropogonias undulatus, 4.4%), Gulf menhaden (Brevoortia patronus, 3.8%), and unidentified gobiids (3.6%). Larval concentrations for dominant taxa were highly variable between years, but the timing of seasonal occurrence for these taxa was relatively consistent. Documented increases in sea surface temperature on the Alabama shelf may have various implications for larval fish dynamics, as indicated by the presence of tropical larval forms (e.g., fistularids, labrids, scarids, and acanthurids) in our ichthyoplankton collections and in recent juvenile surveys of Alabama and northern Gulf of Mexico seagrass habitats

    Change and Recovery of Coastal Mesozooplankton Community Structure During the Deepwater Horizon Oil Spill

    Get PDF
    The response of mesozooplankton community structure to the Deepwater Horizon oil spill in the northern Gulf of Mexico was investigated using data from a long-term plankton survey off the coast of Alabama (USA). Environmental conditions observed in the study area during the oil spill (2010) were compared to historical observations (2005–2009), to support the contention that variations observed in zooplankton assemblage structure may be attributed to the oil spill, as opposed to natural climatic or environmental variations. Zooplankton assemblage structure observed during the oil spill period (May–August) in 2010 was then compared to historical observations from the same period (2005–2009). Significant variations were detected in assemblage structure in May and June 2010, but these changes were no longer significant by July 2010. The density of ostracods, cladocerans and echinoderm larvae were responsible for most of the differences observed, but patterns differed depending on taxa and months. Many taxa had higher densities during the oil spill year, including calanoid and cyclopoid copepods, ostracods, bivalve larvae and cladocerans, among others. Although this result is somewhat surprising, it is possible that increased microbial activity related to the infusion of oil carbon may have stimulated secondary production through microbial-zooplankton trophic linkages. Overall, results suggest that, although changes in zooplankton community composition were observed during the oil spill, variations were weak and recovery was rapid

    Condition of Larval Red Snapper (\u3ci\u3eLutjanus campechanus\u3c/i\u3e) Relative to Environmental Variability and the Deepwater Horizon Oil Spill

    Get PDF
    The Deepwater Horizon oil spill(DWHOS)spatially and temporally overlapped with the spawning of many fish species, including Red Snapper, one of the most economically important reef fish in the Gulf of Mexico. To investigate potential impacts of the DWHOS on larval Red Snapper, data from a long-term ichthyoplankton survey off the coast of Alabama were used to examine: (1)larval abundances among pre-impact (2007–2009), impact(2010), and post-impact (2011, 2013) periods; (2) proxies for larval condition (size-adjusted morphometric relationships and dry weight) among the same periods; and (3) the effects of background environmental variation on larval condition. We found that larval Red Snapper were in poorer body condition during 2010, 2011, and 2013 as compared to the 2007–2009 period, a trend that was strongly (and negatively)related to variation in Mobile Bay freshwater discharge. However, larvae collected during and after 2010 were in relatively poor condition even after accounting for variation in freshwater discharge and other environmental variables. By contrast, no differences in larval abundance were detected during these survey years. Taken together, larval supply did not change relative to the timing of the DWHOS, but larval condition was negatively impacted. Even small changes in condition can affect larval survival, so these trends may have consequences for recruitment of larvae to juvenile and adult life stages

    Seasonal Variability in Ichthyoplankton Abundance and Assemblage Composition in the Northern Gulf of Mexico off Alabama

    Get PDF
    Multiyear ichthyoplankton surveys used to monitor larval fish seasonality, abundance, and assemblage structure can provide early indicators of regional ecosystem changes. Numerous ichthyoplankton surveys have been conducted in the northern Gulf of Mexico, but few have had high levels of temporal resolution and sample replication. In this study, ichthyoplankton samples were collected monthly (October 2004–October 2006) at a single station off the coast of Alabama as part of a long-term biological survey. Four seasonal periods were identified from observed and historic water temperatures, including a relatively long (June–October) “summer” period (water temperature \u3e26°C). Fish egg abundance, total larval abundance, and larval taxonomic diversity were significantly related to water temperature (but not salinity), with peaks in the spring, spring–summer, and summer periods, respectively. Larvae collected during the survey represented 58 different families, of which engraulids, sciaenids, carangids, and clupeids were the most prominent. The most abundant taxa collected were unidentified engraulids (50%), sand seatrout (Cynoscion arenarius, 7.5%), Atlantic bumper (Chloroscombrus chrysurus, 5.4%), Atlantic croaker (Micropogonias undulatus, 4.4%), Gulf menhaden (Brevoortia patronus, 3.8%), and unidentified gobiids (3.6%). Larval concentrations for dominant taxa were highly variable between years, but the timing of seasonal occurrence for these taxa was relatively consistent. Documented increases in sea surface temperature on the Alabama shelf may have various implications for larval fish dynamics, as indicated by the presence of tropical larval forms (e.g., fistularids, labrids, scarids, and acanthurids) in our ichthyoplankton collections and in recent juvenile surveys of Alabama and northern Gulf of Mexico seagrass habitats

    Continuous Damage Fiber Bundle Model for Strongly Disordered Materials

    Full text link
    We present an extension of the continuous damage fiber bundle model to describe the gradual degradation of highly heterogeneous materials under an increasing external load. Breaking of a fiber in the model is preceded by a sequence of partial failure events occurring at random threshold values. In order to capture the subsequent propagation and arrest of cracks, furthermore, the disorder of the number of degradation steps of material constituents, the failure thresholds of single fibers are sorted into ascending order and their total number is a Poissonian distributed random variable over the fibers. Analytical and numerical calculations showed that the failure process of the system is governed by extreme value statistics, which has a substantial effect on the macroscopic constitutive behaviour and on the microscopic bursting activity as well.Comment: 10 pages, 13 figure

    Seasonal Patterns of Surface Inorgamic Carbon System Variables In the Gulf of Mexico Inferred From a Regional High-Resolution Ocean Biogeochemical Model

    Get PDF
    Uncertainties in carbon chemistry variability still remain large in the Gulf of Mexico (GoM), as data gaps limit our ability to infer basin-wide patterns. Here we configure and validate a regional high-resolution ocean biogeochemical model for the GoM to describe seasonal patterns in surface pressure of CO2 (pCO2), aragonite saturation state (ΩAr), and sea–air CO2 flux. Model results indicate that seasonal changes in surface pCO2 are strongly controlled by temperature across most of the GoM basin, except in the vicinity of the Mississippi–Atchafalaya river system delta, where runoff largely controls dissolved inorganic carbon (DIC) and total alkalinity (TA) changes. Our model results also show that seasonal patterns of surface ΩAr are driven by seasonal changes in DIC and TA, and reinforced by the seasonal changes in temperature. Simulated sea–air CO2 fluxes are consistent with previous observation-based estimates that show CO2 uptake during winter–spring, and CO2 outgassing during summer–fall. Annually, our model indicates a basin-wide mean CO2 uptake of 0.35 molm-2yr-1, and a northern GoM shelf (\u3c 200 m) uptake of 0.93 molm-2yr-1. The observation and model-derived patterns of surface pCO2 and CO2 fluxes show good correspondence; thus this study contributes to improved constraints of the carbon budget in the region

    Late left ventricular dysfunction after anatomic repair of congenitally corrected transposition of the great arteries

    Get PDF
    ObjectiveEarly results for anatomic repair of congenitally corrected transposition of the great arteries (ccTGA) are excellent. However, the development of left ventricular dysfunction late after repair remains a concern. In this study we sought to determine factors leading to late left ventricular dysfunction and the impact of cardiac resynchronization as a primary and secondary (upgrade) mode of pacing.MethodsFrom 1992 to 2012, 106 patients (median age at surgery, 1.2 years; range, 2 months to 43 years) with ccTGA had anatomic repair. A retrospective review of preoperative variables, surgical procedures, and postoperative outcomes was performed.ResultsIn-hospital deaths occurred in 5.7% (n = 6), and there were 3 postdischarge deaths during a mean follow-up period of 5.2 years (range, 7 days to 18.2 years). Twelve patients (12%) developed moderate or severe left ventricular dysfunction. Thirty-eight patients (38%) were being paced at latest follow-up evaluation. Seventeen patients had resynchronization therapy, 9 as an upgrade from a prior dual-chamber system (8.5%) and 8 as a primary pacemaker (7.5%). Factors associated with left ventricular dysfunction were age at repair older than 10 years, weight greater than 20 kg, pacemaker implantation, and severe neo-aortic regurgitation. Eight of 9 patients undergoing secondary cardiac resynchronization therapy (upgrade) improved left ventricular function. None of the 8 patients undergoing primary resynchronization developed left ventricular dysfunction.ConclusionsLate left ventricular dysfunction after anatomic repair of ccTGA is not uncommon, occurring most often in older patients and in those requiring pacing. Early anatomic repair and cardiac resynchronization therapy in patients requiring a pacemaker could preclude the development of left ventricular dysfunction

    ENSO-Induced Co-Variability of Salinity, Plantkton Biomass and Coastal Currents in the Northern Gulf of Mexico

    Get PDF
    The northern Gulf of Mexico (GoM) is a region strongly influenced by river discharges of freshwater and nutrients, which promote a highly productive coastal ecosystem that host commercially valuable marine species. A variety of climate and weather processes could potentially influence the river discharges into the northern GoM. However, their impacts on the coastal ecosystem remain poorly described. By using a regional ocean-biogeochemical model, complemented with satellite and in situ observations, here we show that El Niño - Southern Oscillation (ENSO) is a main driver of the interannual variability in salinity and plankton biomass during winter and spring. Composite analysis of salinity and plankton biomass anomalies shows a strong asymmetry between El Niño and La Niña impacts, with much larger amplitude and broader areas affected during El Niño conditions. Further analysis of the model simulation reveals significant coastal circulation anomalies driven by changes in salinity and winds. The coastal circulation anomalies in turn largely determine the spatial extent and distribution of the ENSO-induced plankton biomass variability. These findings highlight that ENSO-induced changes in salinity, plankton biomass, and coastal circulation across the northern GoM are closely interlinked and may significantly impact the abundance and distribution of fish and invertebrates
    • …
    corecore