128 research outputs found

    Area and Reconfiguration Time Minimization of the Communication Network in Regular 2D Reconfigurable Architectures

    Get PDF
    International audienceIn this paper, we introduce a constraint programming- based approach for the optimization of area and of reconfiguration time for communication networks for a class of regular 2D reconfigurable processor array architectures. For a given set of different algorithms the execution of which is supposed to be switched upon request at run-time, we provide static solutions for the optimal routing of data between processors. Here, we support also multi-casting data transfers for the first time. The routing found by our method minimizes the area or the reconfiguration time of the communication network, when switching between the execution of these algorithms. In fact, when switching, the communication network reconfiguration can be executed in just a few clock cycles. Moreover the communication network area can be minimized signifiHeidelbergcantly (62% in average)

    Special Issue on Applied Reconfigurable Computing

    Get PDF
    Open Access funding enabled and organized by Projekt DEAL.Friedrich-Alexander-Universität Erlangen-Nürnberg (1041

    Defragmenting the Module Layout of a Partially Reconfigurable Device

    Full text link
    Modern generations of field-programmable gate arrays (FPGAs) allow for partial reconfiguration. In an online context, where the sequence of modules to be loaded on the FPGA is unknown beforehand, repeated insertion and deletion of modules leads to progressive fragmentation of the available space, making defragmentation an important issue. We address this problem by propose an online and an offline component for the defragmentation of the available space. We consider defragmenting the module layout on a reconfigurable device. This corresponds to solving a two-dimensional strip packing problem. Problems of this type are NP-hard in the strong sense, and previous algorithmic results are rather limited. Based on a graph-theoretic characterization of feasible packings, we develop a method that can solve two-dimensional defragmentation instances of practical size to optimality. Our approach is validated for a set of benchmark instances.Comment: 10 pages, 11 figures, 1 table, Latex, to appear in "Engineering of Reconfigurable Systems and Algorithms" as a "Distinguished Paper
    • …
    corecore