5,739 research outputs found

    A hybrid architecture for robust parsing of german

    Get PDF
    This paper provides an overview of current research on a hybrid and robust parsing architecture for the morphological, syntactic and semantic annotation of German text corpora. The novel contribution of this research lies not in the individual parsing modules, each of which relies on state-of-the-art algorithms and techniques. Rather what is new about the present approach is the combination of these modules into a single architecture. This combination provides a means to significantly optimize the performance of each component, resulting in an increased accuracy of annotation

    A higher gradient theory of mixtures for multi-component materials with numerical examples for binary alloys

    Get PDF
    A theory of mixture for multi-component materials is presented based on a novel, straightforward method for the exploitation of the Second Law of thermodynamics. In particular the constitutive equations for entropy, heat and diffusion flux as well as the stress tensor are formulated as a consequence of the non-negative entropy production. Furthermore we derive the established Gibbs equation as well as the Gibbs Duhem relation which also follow from the formalism. Moreover, it is illustrated, how local mechanical strains due to eigenstrains or external loadings, modify the free energy and, consequently, change the chemical potentials of the components. All consecutive steps are illustrated, first, for simple mixtures and, second, for a system containing two different phases. So-called higher gradients of the concentrations are considered, which take the nonuniform composition into account. It will also become apparent that more/other variables of modified/different physical pr oblems beyond the illustrated ones can be easily treated within the presented framework. This work ends with the specification to binary alloys and with the presentation of various numerical simulations

    Bayesian decomposition of the Galactic multi-frequency sky using probabilistic autoencoders

    Full text link
    All-sky observations of the Milky Way show both Galactic and non-Galactic diffuse emission, for example from interstellar matter or the cosmic microwave background (CMB). The different emitters are partly superimposed in the measurements, partly they obscure each other, and sometimes they dominate within a certain spectral range. The decomposition of the underlying radiative components from spectral data is a signal reconstruction problem and often associated with detailed physical modeling and substantial computational effort. We aim to build an effective and self-instructing algorithm detecting the essential spectral information contained Galactic all-sky data covering spectral bands from γ\gamma-ray to radio waves. Utilizing principles from information theory, we develop a state-of-the-art variational autoencoder specialized on the adaption to Gaussian noise statistics. We first derive a generic generative process that leads from a low-dimensional set of emission features to the observed high-dimensional data. We formulate a posterior distribution of these features using Bayesian methods and approximate this posterior with variational inference. The algorithm efficiently encodes the information of 35 Galactic emission data sets in ten latent feature maps. These contain the essential information required to reconstruct the initial data with high fidelity and are ranked by the algorithm according to their significance for data regeneration. The three most significant feature maps encode astrophysical components: (1) The dense interstellar medium (ISM), (2) the hot and dilute regions of the ISM and (3) the CMB. The machine-assisted and data-driven dimensionality reduction of spectral data is able to uncover the physical features encoding the input data. Our algorithm is able to extract the dense and dilute Galactic regions, as well as the CMB, from the sky brightness values only.Comment: 25 pages, 8 figures, 3 tables. Submitted to Astronomy & Astrophysic

    Correlations between resonances in a statistical scattering model

    Get PDF
    The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of only few channels K < 10. The coupling to the continuum induces two main effects, due to which the distorted system differs from a chaotic system (described by a Gaussian ensemble): 1. The width distribution for large coupling becomes broader than the corresponding Χ2K distribution in the GOE case. 2. Due to the coupling to the continuum, correlations are induced not only between the positions of the resonances but also between positions and widths. These correlations remain even in the strong coupling limit. In order to explain these results, an asymptotic expression for the width distribution is derived for the one channel case. It relates the width of a trapped resonance state to the distance between its two neighboring levels

    Optimal prediction for moment models: Crescendo diffusion and reordered equations

    Full text link
    A direct numerical solution of the radiative transfer equation or any kinetic equation is typically expensive, since the radiative intensity depends on time, space and direction. An expansion in the direction variables yields an equivalent system of infinitely many moments. A fundamental problem is how to truncate the system. Various closures have been presented in the literature. We want to study moment closure generally within the framework of optimal prediction, a strategy to approximate the mean solution of a large system by a smaller system, for radiation moment systems. We apply this strategy to radiative transfer and show that several closures can be re-derived within this framework, e.g. PNP_N, diffusion, and diffusion correction closures. In addition, the formalism gives rise to new parabolic systems, the reordered PNP_N equations, that are similar to the simplified PNP_N equations. Furthermore, we propose a modification to existing closures. Although simple and with no extra cost, this newly derived crescendo diffusion yields better approximations in numerical tests.Comment: Revised version: 17 pages, 6 figures, presented at Workshop on Moment Methods in Kinetic Gas Theory, ETH Zurich, 2008 2 figures added, minor correction

    Impact of bariatric surgery on neural food processing and cognition: an fMRI study

    Get PDF
    Introduction The Roux-en-Y gastric bypass (RYGB) is one of the most widely used techniques for bariatric surgery. After RYGB, weight loss up to 50%–70% of excess body weight, improvement of insulin-resistance, changes in food preferences and improvements in cognitive performance have been reported. This protocol describes a longitudinal study of the neural correlates associated with food-processing and cognitive performance in patients with morbid obesity before and after RYGB relative to lean controls. Methods and analysis This study is a pre–post case– control experiment. Using functional MRI, the neural responses to food stimuli and a working memory task will be compared between 25 patients with obesity, pre and post RYGB, and a matched, lean control group. Resting state fMRI will be measured to investigate functional brain connectivity. Baseline measurements for both groups will take place 4 weeks prior to RYGB and 12 months after RYGB. The effects of RYGB on peptide tyrosine tyrosine and glucagon-like polypeptide-1 will also be determined. Ethics and dissemination The project has received ethical approval by the local medical ethics committee of the Carl-von-Ossietzky University of Oldenburg, Germany (registration: 2017-073). Results will be published in a peer-reviewed journal as original research and on international conferences

    Dynamic compressive strength and fragmentation in sedimentary and metamorphic rocks

    Get PDF
    Brittle deformation at high strain rates results in intense fragmentation and rock pulverisation. For rocks, the critical strain rate at which this behaviour occurs is ~102 s−1. The mechanical properties of rocks at these strain rates can also be very different from their quasi-static properties. Deformation of rocks at these strain rates can occur during fault rupture, landslide events, and meteorite impacts. In this study, we present the results of high strain rate mechanical tests to determine the characteristic strain rate for rate-dependent brittle failure, and the fragment size and shape distributions that result from failure at these conditions. We investigated sandstone, quartzite, limestone, and marble and considered whether the fragment characteristics can be used as diagnostic indicators of loading conditions during brittle failure. We find that the characteristic strain rates, where the dynamic strength is twice the quasi-static strength, range between ~150 and 300 s−1 for rate-dependent brittle failure in the investigated lithologies. Furthermore, we use our results to demonstrate an empirical inverse power-law relationship between fragment size and strain rate for dynamic failure under uniaxial compression. On the other hand, we show that fragment shape is independent of strain rate under dynamic uniaxial loading.<br/

    Magnetic Field Saturation in the Riga Dynamo Experiment

    Get PDF
    After the dynamo experiment in November 1999 had shown magnetic field self-excitation in a spiraling liquid metal flow, in a second series of experiments emphasis was placed on the magnetic field saturation regime as the next principal step in the dynamo process. The dependence of the strength of the magnetic field on the rotation rate is studied. Various features of the saturated magnetic field are outlined and possible saturation mechanisms are discussed.Comment: 4 pages, 8 figure

    Successful Resection of a Re-Occurred Pulmonary Myosarcoma in a Patient with Turner Syndrome Mosaic

    Get PDF
    We describe a patient who underwent thoracic radiation therapy for biopsy-proven pulmonary spindle cell sarcoma in the left lower lobe, 15 months after birth. At the age of 37 she developed shoulder pain, fatigue, and progressive exertion dyspnoea. Chest X-ray revealed a pulmonary mass in the left lower lobe due to a cytology-proven malignant tumour.The patient underwent left pneumonectomy. Histology revealed a myosarcoma of the lung, similar to the previous sarcoma. Furthermore, the patient was diagnosed to have Turner syndrome mosaic and chromosomal analysis revealed a translocation t(1;13) in 3/50 metaphases. However a germline mutation of the p53 tumour suppressor gene was excluded. After 2 years of follow-up the patient is stable and there are no signs of recurrence of the tumour.We conclude a re-occurrence of this very rare malignant disorder of the lung after a 36-year interval in a patient with Turner syndrome mosaic. Following initial curative radiation therapy, with a remission over 36 years, lung resection was now successfully performed
    corecore