28 research outputs found

    Arterial hypertension and β-amyloid accumulation have spatially overlapping effects on posterior white matter hyperintensity volume: a cross-sectional study

    Get PDF
    BackgroundWhite matter hyperintensities (WMH) in subjects across the Alzheimer's disease (AD) spectrum with minimal vascular pathology suggests that amyloid pathology-not just arterial hypertension-impacts WMH, which in turn adversely influences cognition. Here we seek to determine the effect of both hypertension and A beta positivity on WMH, and their impact on cognition.MethodsWe analysed data from subjects with a low vascular profile and normal cognition (NC), subjective cognitive decline (SCD), and amnestic mild cognitive impairment (MCI) enrolled in the ongoing observational multicentre DZNE Longitudinal Cognitive Impairment and Dementia Study (n = 375, median age 70.0 [IQR 66.0, 74.4] years;178 female;NC/SCD/MCI 127/162/86). All subjects underwent a rich neuropsychological assessment. We focused on baseline memory and executive function-derived from multiple neuropsychological tests using confirmatory factor analysis-, baseline preclinical Alzheimer's cognitive composite 5 (PACC5) scores, and changes in PACC5 scores over the course of three years (Delta PACC5).ResultsSubjects with hypertension or A beta positivity presented the largest WMH volumes (p(FDR) < 0.05), with spatial overlap in the frontal (hypertension: 0.42 +/- 0.17;A beta: 0.46 +/- 0.18), occipital (hypertension: 0.50 +/- 0.16;A beta: 0.50 +/- 0.16), parietal lobes (hypertension: 0.57 +/- 0.18;A beta: 0.56 +/- 0.20), corona radiata (hypertension: 0.45 +/- 0.17;A beta: 0.40 +/- 0.13), optic radiation (hypertension: 0.39 +/- 0.18;A beta: 0.74 +/- 0.19), and splenium of the corpus callosum (hypertension: 0.36 +/- 0.12;A beta: 0.28 +/- 0.12). Elevated global and regional WMH volumes coincided with worse cognitive performance at baseline and over 3 years (p(FDR) < 0.05). A beta positivity was negatively associated with cognitive performance (direct effect-memory: - 0.33 +/- 0.08, p(FDR) < 0.001;executive: - 0.21 +/- 0.08, p(FDR) < 0.001;PACC5: - 0.29 +/- 0.09, p(FDR) = 0.006;Delta PACC5: - 0.34 +/- 0.04, p(FDR) < 0.05). Splenial WMH mediated the relationship between hypertension and cognitive performance (indirect-only effect-memory: - 0.05 +/- 0.02, p(FDR) = 0.029;executive: - 0.04 +/- 0.02, p(FDR) = 0.067;PACC5: - 0.05 +/- 0.02, p(FDR) = 0.030;Delta PACC5: - 0.09 +/- 0.03, p(FDR) = 0.043) and WMH in the optic radiation partially mediated that between A beta positivity and memory (indirect effect-memory: - 0.05 +/- 0.02, p(FDR) = 0.029).ConclusionsPosterior white matter is susceptible to hypertension and A beta accumulation. Posterior WMH mediate the association between these pathologies and cognitive dysfunction, making them a promising target to tackle the downstream damage related to the potentially interacting and potentiating effects of the two pathologies

    Cholinergic white matter pathways along the Alzheimer's disease continuum

    Get PDF
    Nemy et al. investigate cholinergic white matter projections along the Alzheimer's disease continuum. They show that alterations are already present in individuals with subjective cognitive decline, preceding the more widespread alterations seen in mild cognitive impairment and Alzheimer's disease dementia. Previous studies have shown that the cholinergic nucleus basalis of Meynert and its white matter projections are affected in Alzheimer's disease dementia and mild cognitive impairment. However, it is still unknown whether these alterations can be found in individuals with subjective cognitive decline, and whether they are more pronounced than changes found in conventional brain volumetric measurements. To address these questions, we investigated microstructural alterations of two major cholinergic pathways in individuals along the Alzheimer's disease continuum using an in vivo model of the human cholinergic system based on neuroimaging. We included 402 participants (52 Alzheimer's disease, 66 mild cognitive impairment, 172 subjective cognitive decline and 112 healthy controls) from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study. We modelled the cholinergic white matter pathways with an enhanced diffusion neuroimaging pipeline that included probabilistic fibre-tracking methods and prior anatomical knowledge. The integrity of the cholinergic white matter pathways was compared between stages of the Alzheimer's disease continuum, in the whole cohort and in a CSF amyloid-beta stratified subsample. The discriminative power of the integrity of the pathways was compared to the conventional volumetric measures of hippocampus and nucleus basalis of Meynert, using a receiver operating characteristics analysis. A multivariate model was used to investigate the role of these pathways in relation to cognitive performance. We found that the integrity of the cholinergic white matter pathways was significantly reduced in all stages of the Alzheimer's disease continuum, including individuals with subjective cognitive decline. The differences involved posterior cholinergic white matter in the subjective cognitive decline stage and extended to anterior frontal white matter in mild cognitive impairment and Alzheimer's disease dementia stages. Both cholinergic pathways and conventional volumetric measures showed higher predictive power in the more advanced stages of the disease, i.e. mild cognitive impairment and Alzheimer's disease dementia. In contrast, the integrity of cholinergic pathways was more informative in distinguishing subjective cognitive decline from healthy controls, as compared with the volumetric measures. The multivariate model revealed a moderate contribution of the cholinergic white matter pathways but not of volumetric measures towards memory tests in the subjective cognitive decline and mild cognitive impairment stages. In conclusion, we demonstrated that cholinergic white matter pathways are altered already in subjective cognitive decline individuals, preceding the more widespread alterations found in mild cognitive impairment and Alzheimer's disease. The integrity of the cholinergic pathways identified the early stages of Alzheimer's disease better than conventional volumetric measures such as hippocampal volume or volume of cholinergic nucleus basalis of Meynert

    Fornix fractional anisotropy mediates the association between Mediterranean diet adherence and memory four years later in older adults without dementia

    Get PDF
    Here, we investigated whether fractional anisotropy (FA) of hippocampus-relevant white-matter tracts mediates the association between baseline Mediterranean diet adherence (MeDiAd) and verbal episodic memory over four years. Participants were healthy older adults with and without subjective cognitive decline and patients with amnestic mild cognitive impairment from the DELCODE cohort study (n = 376; age: 71.47 ± 6.09 years; 48.7 % female). MeDiAd and diffusion data were obtained at baseline. Verbal episodic memory was assessed at baseline and four yearly follow-ups. The associations between baseline MeDiAd and white matter, and verbal episodic memory's mean and rate of change over four years were tested with latent growth curve modeling. Baseline MeDiAd was associated with verbal episodic memory four years later (95 % confidence interval, CI [0.01, 0.32]) but not with its rate of change over this period. Baseline Fornix FA mediated - and, thus, explained - that association (95 % CI [0.002, 0.09]). Fornix FA may be an appropriate response biomarker of Mediterranean diet interventions on verbal memory in older adults.</p

    Brain reserve contributes to distinguishing preclinical Alzheimer's stages 1 and 2

    Get PDF
    BackgroundIn preclinical Alzheimer's disease, it is unclear why some individuals with amyloid pathologic change are asymptomatic (stage 1), whereas others experience subjective cognitive decline (SCD, stage 2). Here, we examined the association of stage 1 vs. stage 2 with structural brain reserve in memory-related brain regions.MethodsWe tested whether the volumes of hippocampal subfields and parahippocampal regions were larger in individuals at stage 1 compared to asymptomatic amyloid-negative older adults (healthy controls, HCs). We also tested whether individuals with stage 2 would show the opposite pattern, namely smaller brain volumes than in amyloid-negative individuals with SCD. Participants with cerebrospinal fluid (CSF) biomarker data and bilateral volumetric MRI data from the observational, multi-centric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study were included. The sample comprised 95 amyloid-negative and 26 amyloid-positive asymptomatic participants as well as 104 amyloid-negative and 47 amyloid-positive individuals with SCD. Volumes were based on high-resolution T2-weighted images and automatic segmentation with manual correction according to a recently established high-resolution segmentation protocol.ResultsIn asymptomatic individuals, brain volumes of hippocampal subfields and of the parahippocampal cortex were numerically larger in stage 1 compared to HCs, whereas the opposite was the case in individuals with SCD. MANOVAs with volumes as dependent data and age, sex, years of education, and DELCODE site as covariates showed a significant interaction between diagnosis (asymptomatic versus SCD) and amyloid status (Ass42/40 negative versus positive) for hippocampal subfields. Post hoc paired comparisons taking into account the same covariates showed that dentate gyrus and CA1 volumes in SCD were significantly smaller in amyloid-positive than negative individuals. In contrast, CA1 volumes were significantly (p = 0.014) larger in stage 1 compared with HCs.ConclusionsThese data indicate that HCs and stages 1 and 2 do not correspond to linear brain volume reduction. Instead, stage 1 is associated with larger than expected volumes of hippocampal subfields in the face of amyloid pathology. This indicates a brain reserve mechanism in stage 1 that enables individuals with amyloid pathologic change to be cognitively normal and asymptomatic without subjective cognitive decline

    Different inflammatory signatures based on CSF biomarkers relate to preserved or diminished brain structure and cognition

    Get PDF
    Neuroinflammation is a hallmark of Alzheimer's disease (AD) and both positive and negative associations of individual inflammation-related markers with brain structure and cognitive function have been described. We aimed to identify inflammatory signatures of CSF immune-related markers that relate to changes of brain structure and cognition across the clinical spectrum ranging from normal aging to AD. A panel of 16 inflammatory markers, A beta 42/40 and p-tau181 were measured in CSF at baseline in the DZNE DELCODE cohort (n = 295);a longitudinal observational study focusing on at-risk stages of AD. Volumetric maps of gray and white matter (GM/WM;n = 261) and white matter hyperintensities (WMHs, n = 249) were derived from baseline MRIs. Cognitive decline (n = 204) and the rate of change in GM volume was measured in subjects with at least 3 visits (n = 175). A principal component analysis on the CSF markers revealed four inflammatory components (PCs). Of these, the first component PC1 (highly loading on sTyro3, sAXL, sTREM2, YKL-40, and C1q) was associated with older age and higher p-tau levels, but with less pathological A beta when controlling for p-tau. PC2 (highly loading on CRP, IL-18, complement factor F/H and C4) was related to male gender, higher body mass index and greater vascular risk. PC1 levels, adjusted for AD markers, were related to higher GM and WM volumes, less WMHs, better baseline memory, and to slower atrophy rates in AD-related areas and less cognitive decline. In contrast, PC2 related to less GM and WM volumes and worse memory at baseline. Similar inflammatory signatures and associations were identified in the independent F.ACE cohort. Our data suggest that there are beneficial and detrimental signatures of inflammatory CSF biomarkers. While higher levels of TAM receptors (sTyro/sAXL) or sTREM2 might reflect a protective glia response to degeneration related to phagocytic clearance, other markers might rather reflect proinflammatory states that have detrimental impact on brain integrity

    Short communication: Lifetime musical activity and resting-state functional connectivity in cognitive networks

    Get PDF
    Background Participation in multimodal leisure activities, such as playing a musical instrument, may be protective against brain aging and dementia in older adults (OA). Potential neuroprotective correlates underlying musical activity remain unclear. Objective This cross-sectional study investigated the association between lifetime musical activity and resting-state functional connectivity (RSFC) in three higher-order brain networks: the Default Mode, Fronto-Parietal, and Salience networks. Methods We assessed 130 cognitively unimpaired participants (≥ 60 years) from the baseline cohort of the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study. Lifetime musical activity was operationalized by the self-reported participation in musical instrument playing across early, middle, and late life stages using the Lifetime of Experiences Questionnaire (LEQ). Participants who reported musical activity during all life stages (n = 65) were compared to controls who were matched on demographic and reserve characteristics (including education, intelligence, socioeconomic status, self-reported physical activity, age, and sex) and never played a musical instrument (n = 65) in local (seed-to-voxel) and global (within-network and between-network) RSFC patterns using pre-specified network seeds. Results Older participants with lifetime musical activity showed significantly higher local RSFC between the medial prefrontal cortex (Default Mode Network seed) and temporal as well as frontal regions, namely the right temporal pole and the right precentral gyrus extending into the superior frontal gyrus, compared to matched controls. There were no significant group differences in global RSFC within or between the three networks. Conclusion We show that playing a musical instrument during life relates to higher RSFC of the medial prefrontal cortex with distant brain regions involved in higher-order cognitive and motor processes. Preserved or enhanced functional connectivity could potentially contribute to better brain health and resilience in OA with a history in musical activity. Trial registration German Clinical Trials Register (DRKS00007966, 04/05/2015)
    corecore