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Abstract

Background

Participation in multimodal leisure activities, such as playing a musical instrument, may be

protective against brain aging and dementia in older adults (OA). Potential neuroprotective

correlates underlying musical activity remain unclear.

Objective

This cross-sectional study investigated the association between lifetime musical activity and

resting-state functional connectivity (RSFC) in three higher-order brain networks: the

Default Mode, Fronto-Parietal, and Salience networks.

Methods

We assessed 130 cognitively unimpaired participants (� 60 years) from the baseline cohort

of the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study.

Lifetime musical activity was operationalized by the self-reported participation in musical

instrument playing across early, middle, and late life stages using the Lifetime of Experi-

ences Questionnaire (LEQ). Participants who reported musical activity during all life stages

(n = 65) were compared to controls who were matched on demographic and reserve charac-

teristics (including education, intelligence, socioeconomic status, self-reported physical

activity, age, and sex) and never played a musical instrument (n = 65) in local (seed-to-

voxel) and global (within-network and between-network) RSFC patterns using pre-specified

network seeds.

Results

Older participants with lifetime musical activity showed significantly higher local RSFC

between the medial prefrontal cortex (Default Mode Network seed) and temporal as well as

frontal regions, namely the right temporal pole and the right precentral gyrus extending into

the superior frontal gyrus, compared to matched controls. There were no significant group

differences in global RSFC within or between the three networks.

Conclusion

We show that playing a musical instrument during life relates to higher RSFC of the medial

prefrontal cortex with distant brain regions involved in higher-order cognitive and motor pro-

cesses. Preserved or enhanced functional connectivity could potentially contribute to better

brain health and resilience in OA with a history in musical activity.

Trial registration

German Clinical Trials Register (DRKS00007966, 04/05/2015).
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request from any qualified investigator through the

DZNE-DELCODE Steering Board for purposes of

replicating procedures and results. Requests to
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clinical-studies/delcode/ (Study Coordination and

Project Management). We used existing data

analysis packages for the neuroimaging and
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1 Introduction

1.1 Musical activity and late-life cognition

Long-term participation in playing a musical instrument, as an integrated multimodal lifestyle

activity, could be protective against cognitive decline and dementia in late life. A history of

musical activity in older adults (OA) is associated with reduced risk of developing dementia

[1]. Cross-sectional studies have further shown that musically active OA (both amateurs and

professionals) have better cognitive function across multiple domains compared to control

participants [2–6]. Likewise, training/intervention studies in musically non-experienced OA

have demonstrated positive effects of musical instrument playing on cognitive abilities com-

pared to control interventions [7–11]. Playing a musical instrument may therefore help

improve or maintain brain and cognitive health in late life [12, 13], however, possible neuro-

protective correlates underlying musical activity in OA need further investigation.

1.2 Musical activity and functional brain connectivity

It has been suggested that participation in musical activities promotes neural plasticity in

motor, sensory, and cognitive networks throughout life [14–16]. Playing a musical instrument

necessitates the activation and integration of multimodal motor, sensory, cognitive and emo-

tional processes, which may help to preserve neural function in distributed brain networks

into older age. Studies in cognitively unimpaired OA have shown that greater musical activity/

experience is associated with greater neural resources or neural capacities in distant brain

regions including higher-order frontal, temporal, and/or parietal areas [6, 17]. This aligns with

findings in young to middle-aged musicians, showing greater functional and/or structural con-

nectivity within (but not limited to) frontal-temporal-parietal brain networks compared to

control participants [18–20]. In a recent study specifically addressing OA, greater musical

experience was reported to correlate with variations in resting-state functional connectivity

(RSFC) of insular regions with sensory, motor and cognitive brain regions, including the pre-

central and postcentral gyrus as well as the prefrontal cortex [21].

Despite these findings, the association between musical activity and RSFC in large-scale

brain systems that are vulnerable to both normal and pathological neurocognitive aging pro-

cesses remains unknown. This association is important to investigate, because preserved neu-

ral activation and connectivity in higher-order brain networks is considered to act as a neural

correlate of cognitive reserve and resilience in older age [22–25]. Previous research points to

the particular importance of three large-scale resting-state networks (RSN, also known as triple

networks) that have been shown to be involved in neurocognitive aging and Alzheimer’s dis-

ease (AD) [26], namely the Fronto-Parietal Network (FPN, also known as central executive

network), the Default Mode Network (DMN), and the Salience Network (SAL) [27–29]. In

these higher-order brain networks, lower RSFC has been shown to be associated with lifestyle

risk factors and/or decline of cognitive abilities in OA [26, 30]. In contrast, higher RSFC in

these brain systems (namely the FPN and SAL) has been related to protective lifestyle factors

and/or preserved cognitive abilities in the context of brain pathology [22, 31], supporting a

contribution of these neural correlates in brain reserve and resilience.

1.3 The present study

In this cross-sectional study, we aimed to investigate to what extent self-reported playing of a

musical instrument in early, middle, and late life stages (subsequently termed “lifetime musical

activity”) might be related to RSFC within the FPN, DMN, SAL networks in cognitively unim-

paired OA. As mentioned above, previous studies have shown that neural correlates associated
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with musical activity/experience in OA partially overlap with these higher-order brain net-

works [6, 17, 21]. We therefore addressed the hypothesis that participation in this multimodal

lifestyle activity relates to increased RSFC in the triple networks. More specifically, we com-

pared local (seed-to-voxel) and global (within- and between-network) RSFC patterns in partic-

ipants (� 60 years) from the DZNE–Longitudinal Cognitive Impairment and Dementia Study

(DELCODE) cohort [32] who reported having played a musical instrument during all life

stages compared to matched control participants who never played a musical instrument [6].

2 Material andmethods

This study was based on the baseline dataset of the DZNE–DELCODE cohort, an ongoing

German multicenter longitudinal study [32] designed and carried out in accordance with the

ethical principles of the Declaration of Helsinki. The protocol was approved by local ethical

committees at each study site and all participants provided written informed consent. The

DELCODE study is registered at the German Clinical Trials Register (DRKS00007966; date:

04/05/2015). The authors did not have access to detailed information to identify individual

participants. Detailed information on the study protocol is provided elsewhere [32].

2.1 Participants

Based on our hypothesis, we selected cognitively unimpaired participants from the DZNE--

DELCODE baseline cohort [32], including healthy control participants (HC), participants

with subjective cognitive decline (SCD), and participants with a family history (FH) of Alzhei-

mer’s disease (AD). To assess cognitive functioning in these participants, the Consortium to

Establish a Registry for Alzheimer’s Disease (CERAD) neuropsychological test battery [33]

was applied at all assessment sites. Normal or unimpaired cognitive performance was defined

by a test performance within –1.5 standard deviations (SD) of the age, sex, and education-

adjusted norms on all subtests of the CERAD neuropsychological battery. In addition to stan-

dard neuropsychological tests, neurological examinations and blood tests were carried out to

exclude other diseases and conditions that could affect the participants’ cognition. Further

information are provided in the S1 File and the DELCODE study protocol [32]. All partici-

pants of the DELCODE cohort have fluent German skills and were 60 years or older.

The total sample of the present study included 130 participants, consisting of a group with

lifetime musical activity (n = 65) and a group of matched controls (n = 65; Table 1). The latter

group was selected from the DELCODE cohort using a one-to-one matching procedure based

on pre-defined characteristics including socioeconomic status (SES), crystallized intelligence,

self-reported physical activity, sex, age, years of education, and diagnostic group. The selection

flow chart (S1 Fig in S1 File) and details on the selection process and one-to-one matching

procedure can be found in the S1 File. The present sample and selection procedures over-

lapped with that of our previous study [6].

2.2 Measurements

2.2.1 Self-reported assessment of musical activity. Information about lifetime experi-

ences of musical activity were derived from the Lifetime of Experiences Questionnaire (LEQ)

[34] using a version adapted to the German population (LEQ-D) [35]. We used the same cate-

gorization scheme as described in detail in our previous study [6]. Briefly, participants

answered questions about playing a musical instrument during their lifetime (“How often did

you play a musical instrument?”, 6-point Likert-scale: 0: never, 1: less than 1 time per month,

2: 1 time per month, 3: 2 times per month, 4: weekly, 5: daily) across the life stages (13–30

years, 30–65 years, and if applicable� 65 years). Participants who reported that they had
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played a musical instrument at all life stages, taking into account their respective age, and with

a high frequency (� 2 times per month) in at least one of these life stages, were categorized as

having a lifetime history of musical activity. In contrast, participants who reported to never

had played a musical instrument at any given life stage were classified as control group, which

was matched in terms of demographic characteristics and reserve proxies (see above). Detailed

information on the frequency of playing a musical instrument across the different life stages of

each participant in the lifetime musical activity group is provided in our S2 Fig in S1 File.

2.2.2 MRI acquisition, pre-processing and denoising. The magnetic resonance imaging

(MRI) data were acquired with nine 3.0 Tesla Siemens scanners (one Prisma system, one Skyra

system, three TIM Trio systems, four Verio systems) at nine DZNE sites using harmonized

acquisition protocols [32]. For the present study, we used structural T1-weighted (MPRAGE)

and resting-state functional MRI (fMRI) data. Detailed sequence parameters can be found in

the S1 File.

The MRI images were preprocessed using the default preprocessing pipeline for volume-

based analyses (direct normalization to Montreal Neurological Institute (MNI)-space) of the

CONN Functional Connectivity Toolbox version 18b [36] in the graphical user interface,

based on SPM12 [37] and implemented in MATLAB [38]. In brief, this preprocessing pipeline

includes functional realignment and unwarping, slice-timing correction, outlier identification,

Table 1. Descriptive data of the matched sample (n = 130).

Musical activity
(n = 65)
M (SD)

Matched controls
(n = 65)
M (SD)

Test statistics p

Sex: female/male (n) 28/37 30/35 χ2 = 0.031 .860

Age (years) 68.12 (6.78) 68.45 (5.36) t = 0.301 .764

Education (years) 16.45 (2.54) 16.46 (2.65) t = 0.034 .973

Crystallized Intelligence a 33.38 (2.10) 33.43 (1.79) t = 0.135 .893

SES b 67.84 (14.94) 65.66 (18.65) t = -0.735 .464

Diagnostic group:
HC/SCD/FH (n)

16/42/7 17/39/9 χ2 = 0.391 .822

Lifetime physical activity c 4.21 (0.76) 4.25 (0.86) t = 0.270 .788

Current physical activity d 34.34 (11.67) 32.30 (11.53) t = -0.985 .327

LEQ total specific score e 83.36 (13.61) 79.24 (16.64) t = -1.359 .177

LEQ total non-specific score (adapted) f 20.25 (3.86) 18.54 (3.61) t = -1.709 .090

*** p < .001

** p < .005

* p < .05.

M = mean, SD = standard deviation.
a Measured with the Multiple-Choice Vocabulary Test (MWT-B, minimum: 0, maximum: 37). Higher scores indicate higher intelligence.
b Measured by the International Socioeconomic Index of Occupational Information (ISEI; minimum: 16, maximum: 90), based on occupational information provided

by participants. Higher scores indicate higher SES.
c Measured using the Lifetime of Experiences Questionnaire (LEQ), in which participants answered questions about the frequency of physical activity on a six-point

Likert scale (0: never to 5: daily). Higher scores indicate more frequent physical activity.
d Measured using the Physical Activity Scale for the Elderly (PASE; minimum: 0). Higher scores indicate greater levels of current physical activity.
e Measured using the specific score of the LEQ that includes information on educational attainment and occupational complexity between the ages of 13 to> 65. Higher

scores indicate higher cognitive enrichment.
f Measured using the non-specific score of the LEQ that includes information on leisure time activities between the ages of 13 to> 65. Higher scores indicate greater

engagement in leisure time activities. Note, the score was adapted to exclude musical activity.

Key. AD: Alzheimer’s disease, FH: AD family history; HC: healthy controls, SCD: subjective cognitive decline; SES: socioeconomic status.

https://doi.org/10.1371/journal.pone.0299939.t001
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and direct segmentation and normalization of the functional and structural images. The pipe-

line performs a non-linear transformation of the structural and functional MRI data to MNI

space using the unified segmentation approach [39] that is based on the separation of the

images in gray matter, white matter, and cerebrospinal fluid (CSF). As a result, the functional

and structural images are located in the same space without being explicitly co-registered to

each other. We performed a visual quality assurance in CONN to assess the quality of co-regis-

tration by checking that the anatomical and functional images are aligned with the MNI tem-

plate. Lastly, the functional images were smoothed with an 8-mm full-width half-maximum

Gaussian kernel. Detailed information on the default preprocessing pipeline is available in the

CONNmanual [40] and the online documentation [41].

We further applied the default denoising pipeline implemented in CONN (version 18b),

which combines two steps to remove noise, outliers, and motion artifacts that can cause distor-

tions in the functional MRI data. The first step in this denoising pipeline is a linear regression

of potential confounding effects in the Blood Oxygenation Level Dependent (BOLD) signal

using Ordinary Least Squares. This is followed by the removal of slow-frequency fluctuations

with a band pass-filter of [0.008–0.09 Hz]. Detailed information on the default denoising pipe-

line is available in the CONNmanual [40] and the online documentation [42].

2.2.3 Functional MRI processing. To assess local RSFC as well as global RSFC for each of

the RSN (DMN, SAL, FPN), we selected network-specific region-of-interests (ROIs) provided

by the CONN toolbox. These ROIs were obtained from an independent component analysis

on 497 participants of the Human Connectome Project [36, 43]. For future replication studies,

the network-specific ROIs used for the RSFC analysis and corresponding MNI centroid coor-

dinates are provided in the S1 File. Next, we created custom seeds with an 8-mm sphere for

each RSN using the network-specific ROIs with their respective MNI centroid coordinates, as

provided by CONN.

In the context of our study, we assessed “local RSFC” as the functional coupling between a

central node (i.e. seed region) of each RSN and other brain regions. The local RSFC was com-

puted for each RSN by the a-priori selection of one ROI (or network seed) for each RSN that

was of particular interest for our study. More precisely, we chose frontal seeds for each RSN,

namely, for the DMN: medial prefrontal cortex seed (MPFC; +1, +55, -3), SAL: anterior cingu-

late cortex seed (ACC; 0, +22, +35), and FPN: left lateral prefrontal cortex seed (LPFC; -43,

+33, +28). A visualization of seed locations is provided in S3 Fig in S1 File. The selection of

frontal seeds for the RSN was based on previous research, showing an involvement of higher-

order frontal regions in musical activity/training [6, 20, 21], cognitive reserve processes [22,

44] and cognitive functions associated with aging and AD [45–48]. Local RSFC values were

calculated using the seed-to-voxel connectivity analysis performed in CONN, similar to our

previous studies [31, 49]. First-level whole-brain seed-based connectivity maps were generated

for each RSN and each participant by calculating Fisher’s r-to-z-transformed correlation coef-

ficients between the mean BOLD time course of each custom seed and the BOLD time course

of all other voxels in the whole brain. The individual seed-based connectivity maps for each

RSN were then subjected to a second-level analysis (see below).

We further assessed "global RSFC" defined as the functional coupling across spatially distant

nodes within each RSN. To quantify global RSFC within each RSN (i.e., intra-network RSFC),

we used the network-specific ROIs provided by CONN (see S1 Table in S1 File). The ROI-to-

ROI connectivity values were computed for each pair of ROIs belonging to the respective net-

work based on the pairwise BOLD signal correlations, which were then converted to z-scores

using Fisher’s r-to-z transformation. Using the automated script “conn_withinbetweenROItest”

implemented in CONN, the average functional connectivity for each RSN and each participant
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was computed. This measure of intra-network RSFC was extracted from CONN and subjected

to statistical analysis.

In a post-hoc analysis, we additionally evaluated the global RSFC between the RSN (i.e.,

inter-network RSFC). We used the above-mentioned network-specific ROIs and the auto-

mated script “conn_withinbetweenROItest” as implemented in CONN to compute the inter-

network RSFC for each possible network combination (DMN-SAL, DMN-FPN, SAL-FPN).

The inter-network RSFC was calculated by averaging the ROI-to-ROI connectivity values (z-

scores) over all given ROIs of each RSN combination for each participant. The resulting mea-

sure of inter-network RSFC was subsequently extracted from CONN for statistical analysis.

2.2.4 Additional measures. The SES, crystallized intelligence, self-reported physical activ-

ity, sex, age, years of education, and diagnostic group were considered in the one-to-one

matching procedure to select a matched control group (i.e., without history of musical instru-

ment playing). Most of these measures were provided by the DELCODE baseline dataset [32].

As described in detail in our previous study [6], the SES was assessed using the Interna-

tional Socioeconomic Index of Occupational Information (ISEI, min. score: 16, max. score:

90) [50], with higher scores corresponding to higher SES. Briefly, the self-reported occupa-

tional history of each participant, as assessed by the LEQ across 10 five-year intervals from

middle-to-late adulthood (age 30 to 79 years), was coded into occupational categories using

the O*Net code system [51, 52]. The O*Net scores were then converted into ISEI scores using

fully-automated publicly-available crosswalk procedures that included conversion to Standard

Occupational Classification codes (SOC), International Standard Classification of Occupations

(ISCO-08) and ISEI calculation [53]. The resulting ISEI scores were averaged across the given

time intervals to calculate a mean SES measure for each participant.

Crystallized intelligence was estimated for each participant using the Multiple-Choice

Vocabulary Intelligence Tests (MWT) [54]. Lifetime physical activity was assessed using par-

ticipants’ responses in the LEQ [34]. In addition, we assessed current physical activity (in the

past 7 days) using the self-reported Physical Activity Scale for the Elderly (PASE) [55]. Further

information is provided in the S1 File. Finally, we evaluated the total specific and non-specific

(excluding musical activity) LEQ scores [34], which includes information about educational

attainment and occupational complexity as well as participation in leisure time activities

between the ages of 13 to> 65 (if applicable), respectively.

2.3 Statistical analysis

Statistical analyses were carried out in CONN or in R (version 4.1.2) [56] using RStudio (ver-

sion 2022.02.0) [57]. The statistical models carried out in CONN are described below. For

those analyses carried out in R, p-values of< .005 were considered statistically significant in

agreement with Benjamin and colleagues [58]. All statistical assumptions were checked visu-

ally or by statistical tests (e.g., Shapiro-Wilk test, Breusch-Pagan test) before analyses were per-

formed. Lastly, all plots were generated using the R package ggplot2 (version 3.3.5) [59] and

ggalluvial (version 0.12.5) [60] for additional plots in the S1 File.

2.3.1 Sample characteristics. Participants with lifetime musical activity were compared

with matched controls for selected demographic and behavioral data using the R package

psych (version 2.2.3) [61], Student’s t-test, and Pearson’s Chi-squared test (χ2). Whenever the

normal distribution requirement of the t-test was not met, Mann-Whitney-U-tests or Wil-

coxon-tests (W) were performed.

2.3.2 Local functional connectivity. To assess the association between lifetime musical

activity (group variable) and local RSFC of each RSN seed, we performed a second-level

whole-brain linear regression analysis with lifetime musical activity as independent variable,
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the individual Fisher-z-transformed seed-connectivity maps as dependent variable and scan-

ner location (dummy coded with reference) as co-variate of no interest. The statistical

parametric map obtained for each RSN seed was thresholded using a voxel-level threshold of p

< .005 (uncorrected), and a cluster extend threshold of p< .05 corrected for multiple compar-

isons using False Discovery Rate (FDR). The threshold procedure is comparable to our previ-

ous studies [31, 49] and is considered accetable for the detection of smaller effects [62]. The

FSL image viewer (version 6.0.4) [63] was used to determine the center of gravity coordinates

of the resulting clusters, which were then used in conjunction with the Harvard-Oxford Corti-

cal Structural Atlas (RRID:SCR_001476) [64, 65] to determine the cluster locations. Mean

local RSFC values (z-scores) were extracted for each significant cluster and each participant for

follow-up analysis and visualization carried out in R (version 4.1.2) [56].

2.3.3 Global functional connectivity. To assess the association between lifetime musical

activity (group variable) and global RSFC within each RSN as well as the inter-network RSFC,

we used the extracted global RSFC values for each RSN and each participant and performed

multiple linear regression analysis in R (version 4.1.2) [56] with lifetime musical activity as the

independent variable, the individual global RSFC values (z-scores) or inter-network RSFC val-

ues (z-scores) as dependent variable, and scanner location (see above) as co-variate of no

interest.

3 Results

3.1 Sample characteristics

The final sample consisted of 130 participants with 65 participants in each group (lifetime

musical activity: n = 65, matched controls: n = 65) with no significant differences in the group

characteristics including demographic and behavioral measures. Descriptive data can be found

in Table 1. In a post-hoc assessment, we further compared the two groups across additional

characteristics and found no significant difference in social activities (p = .783) measured

using the LEQ [34], personality traits of openness (p = .957), extraversion (p = .926), agreeable-

ness (p = .856), neuroticism (p = .909), and conscientiousness (p = .606) measured using the

10-item short form of the Big Five Inventory (BFI-10) [66], subclinical depression (p = .127)

measured using the 15-item short form of the Geriatric Depression Scale (GDS) [67], and the

body mass index (BMI, p = .305) as an indicator of dietary habits.

3.2 Local functional connectivity

Results of the local RSFC analysis are provided in Table 2 and Fig 1. In the DMN, participants

with lifetime musical activity exhibited greater local functional connectivity between the

MPFC (DMN seed) and two clusters in the right temporal pole (standardized β = 0.471) and

the right precentral gyrus extending into the right superior frontal gyrus (β = 0.360). For the

FPN and SAL seeds, there were no significant group differences in the seed-to-voxel connec-

tivity patterns between participants with versus without lifetime musical activity.

3.3 Global functional connectivity

Results of the global (within-network) RSFC analysis are provided in the (S3 Fig in S1 File).

There were no significant group differences between participants with lifetime musical activity

and matched controls in global (within-network) connectivity in the DMN (β = 0.113, p =

.220), SAL (β = -0.006, p = .946) or FPN (β = -0.086, p = .365).

In a post-hoc evaluation, we further compared the inter-network RSFC between two

groups. We found no significant differences between participants with lifetime musical activity
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and controls in the inter-network RSFC of DMN-SAL (β = -0.068, p = .473), DMN-FPN (β =

0.017, p = .854), and SAL-FPN (β = -0.025, p = .786).

4 Discussion

4.1 Summary of findings

This cross-sectional study investigated the association between self-reported participation in

lifetime musical activity and RSFC in the three higher-order brain networks that are vulnerable

to aging and dementia, namely the DMN, SAL, and FPN (also known as triple networks). We

compared cognitively unimpaired groups of participants with musical activity during all life

stages and matched controls from the DZNE-DELCODE cohort [32] in terms of their local

and global functional connectivity patterns. We show that playing a musical instrument during

life is associated with higher RSFC of the MPFC with distant frontal and temporal regions that

are partially associated with the DMN. Similar results were not obtained for local RSFC pat-

terns of the SAL and FPN or for the global (within-network and between-network) RSFC pat-

terns of the triple networks. Preserved or enhanced functional connectivity between distant

higher-order brain regions could potentially contribute to better brain health and resilience in

OA with a history of musical activity–a hypothesis that should be investigated in future

studies.

4.2 Musical activity and local functional connectivity

Our study demonstrates that lifetime musical activity relates to higher functional connectivity

between brain regions that are associated with higher-order cognitive and motor processes.

Specifically, we show that older participants who reported playing a musical instrument during

life have higher local RSFC between the MPFC (DMN seed) and two clusters in distant tempo-

ral and frontal regions (namely, the right temporal pole, and the right precentral extending

into the superior frontal gyrus) compared to matched controls. In general, this result is consis-

tent with previous cross-sectional studies showing that greater musical activity or musical

experience in younger and older adults (amateurs and professionals) is related to mostly

enhanced RSFC comprising large-scale brain networks, including sensory, motor, and cogni-

tive regions [20, 21, 68]. Interestingly, a preliminary study [68] has demonstrated an increase

Table 2. Resulting clusters of the seed-to-voxel connectivity analysis for the DMN seed.

No. Cluster Center of gravity Cluster Label No. BA Hemisphere

MNI coordinates
(x, y, z)

p-value
(FDR-corrected)

Size
(No. voxels)

(Percentage of overlap)

1 +33, +11, -26 < .011* 549 Temporal pole (88%) BA 38 (31%),
BA 47 (28%)

right

2 +26, -11, +63 < .033* 391 Precentral gyrus (35%),
Superior frontal gyrus

(21%)

BA 6 (51%),
BA 4 (22%)

right

*** p < .001

** p < .01

* p < .05.

Musical activity was used as predictor and dummy coded with 1 for lifetime musical activity and 0 for controls (no lifetime musical activity).

The statistical model was adjusted for scanner location (dummy coded) and results were corrected for multiple comparisons using FDR.

Corresponding brain regions were defined with the FSL image viewer using the center of gravity coordinates of the resulting clusters and the Harvard-Oxford Cortical

Structural Atlas.

BA: Brodmann area, DMN: Default Mode Network, FDR: False Discovery Rate, MNI: Montreal Neurological Institute.

https://doi.org/10.1371/journal.pone.0299939.t002
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Fig 1. Results of the local (seed-to-voxel) connectivity analysis. A. The brain map shows the two significant clusters (1 and 2, displayed in red)
resulting from seed-to-voxel analysis between the MPFC (DMN seed, displayed in the S3 Fig in S1 File) and all other voxels. The brain maps (left side)
show the clusters (voxel-level threshold of p< 0.005 and cluster-level threshold of p< 0.05, FDR-corrected) located in temporal and frontal brain
regions (L: left and R: right). B. Cluster 1: located in the right temporal pole (coronal plane, y = 8).D. Cluster 2: located in the right precentral gyrus
extending to the superior frontal gyrus (coronal plane, y = -8). C. and E. The corresponding graphs (right side) show higher functional connectivity
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in mean RSFC with higher age in a small sample of musicians (n = 8, aged 20 to 67 years),

while the opposite pattern was observed in control participants. It thus appears that preserved

or enhanced RSFC could play an important role in the brain health benefits associated with

participation in musical activities in older age.

Our results specifically point towards a potential link between a history of musical activity

and functional connectivity in the DMN, a critical network involved with normal and patho-

logical neurocognitive aging and its risk states [28, 69, 70]. Interestingly, a recent training/

intervention study reported an increased anticorrelation in RSFC between temporal brain

regions (the right Heschl’s gyrus) and the dorsal posterior cingulate cortex, as a key region of

the DMN, after 12 months of piano training compared to control (musical listing awareness)

intervention [71]. While we used a different study design, our results converge with the obser-

vation that musical activity is associated with higher RSFC partially involving DMN nodes.

Albeit the temporal pole is not a core node of the DMN [27], it is considered part of a DMN

subsystem that seems to be linked to higher-order cognitive processes including decision-mak-

ing, memory, cognition, and problem-solving [72, 73]. On the other hand, the right precentral

gyrus has been associated with motor processes [72, 74], while the right superior frontal gyrus

has been reported to be involved in motor control tasks [73, 75]. Moreover, parts of this region

appear to support working memory [76, 77] and to be anatomically connected with the DMN

[78–80], placing its function between the temporal pole and the precentral gyrus. Increased

functional connectivity between the MPFC, which is responsible for action and behavior regu-

lation [81], and distant brain regions may represent a neural correlate of the complex sensory,

motor and cognitive integration processes associated with playing a musical instrument.

Taken together, the present results are consistent with previous research in this field [21]

and substantiate the notion that musical activities may help to preserve brain health in older

age. The inherent multimodal stimulation associated with playing a musical instrument could

enable the activation and integration of multiple brain regions and thus enhance neuroplastic-

ity in musically active people [14–16]. This could promote a more efficient recruitment of neu-

ral resources and capacities, as suggested by previous studies in musically active younger and

older adults [6, 82]. A recent musical training/intervention study investigating neural changes

in musically non-experienced OA reported effects on functional connectivity (reflective of

higher efficiency) between distant brain regions in a working memory task after 4 months of

learning a musical instrument compared to passive control intervention [9]. Together, our and

previous findings may imply that a history of musical activity might support the brain’s ability

to maintain and/or to facilitate functional connectivity or information transfer between spe-

cialized brain regions that are implicated in playing a musical instrument. Preserved or

enhanced RSFC in these neural networks (both global and local RSFC) could support brain

health and resilience in OA, as shown in previous studies investigating other reserve proxies

[22, 31]. Prospective studies are needed to further clarify the neural correlates associated with

long-term engagement in musical activity in OA and the extent to which they may be protec-

tive in normal and pathological neurocognitive aging.

In our study, lifetime musical activity was not significantly associated with local connectiv-

ity differences for the other higher-order brain networks, namely the SAL and FPN. This may

be attributable to the triple network theory/model, which states that FPN and SAL in general

show higher activation during tasks, while the DMN is most activated at rest [29]. Notably

(mean z scores) between the MPFC (DMN seed) and each cluster in older participants with lifetime musical activity compared to matched controls.
Box plots display the median with 95% confidence intervals, interquartile range with lower (25th) and upper percentiles (75th), and individual data points
within each group.Key: DMN: Default Mode Network, FC: Functional connectivity, FDR: False Discovery Rate, MPFC: Medial Prefrontal Cortex.

https://doi.org/10.1371/journal.pone.0299939.g001
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though, a previous study has reported higher RSFC in nodes associated with the SAL network

in younger musicians compared to non-musicians [83]. The difference between these findings

and our observations could be explained by the different proficiency levels, recruitment/assess-

ment methods, and age ranges of the respective study samples. Overall, a more detailed assess-

ment of musical activity (for discussion see below) in population studies might be necessary to

draw conclusions about the involvement of the FPN and SAL networks in the neural benefits

associated with playing a musical instrument in older age.

4.3 Musical activity and global functional connectivity

Assessing global RSFC within and between the triple networks (DMN, SAL, and FPN) between

OA with lifetime musical activity and matched controls, we found no evidence for significant

differences between these two groups. Notably, a previous pilot training/intervention study in

OA found in global RSFC within the FPN after a 4-month dance movement program com-

pared to waiting list control [84], with dance being considered an enriching multimodal leisure

activity with physical, cognitive, and social engagement [85]. It might thus be reasonable to

assume that the cross-sectional nature of our study may not have sufficient power to detect

presumably subtle differences in global RSFC patterns. In addition, more extensive informa-

tion on the musical skills/experiences might be beneficial to detect a potential link between

engagement in lifetime musical activity and global functional coupling within and between

higher-order brain networks in OA.

4.4 Strengths and limitations

Overall, this study demonstrates that playing a musical instrument is associated with higher

RSFC of the MPFC with distant frontal and temporal regions, which could be a neuroprotec-

tive correlate of this multimodal leisure activity in late life. The present results were found sig-

nificant, adjusting for several other reserve proxies including years of education, crystallized

intelligence, SES, and self-reported engagement in physical activity. Also, the two groups (with

and without lifetime musical activity) did not differ in measures of lifetime educational and

occupational enrichment and engagement in other leisure time activities. We incorporated a

relatively large sample of well-characterized OA from the DELCODE cohort with high-quality

neuroimaging data, collected using harmonized acquisition protocols across assessment sites.

We further evaluated playing a musical instrument as an accessible leisure activity rather than

a professional activity, as investigated in previous studies [68].

Following limitations need to be considered. 1. The present study used a cross-sectional

design, which does not allow us to interpret the causality of the observed associations. Further-

more, the present sample size was modest. Our findings thus need to be replicated in future

studies with larger samples to draw firm conclusions before longitudinal studies with rigorous

musical training/intervention programs could provide deeper insights into the investigated

relationships. 2. We used a one-to-one matching procedure to assign a matched control group

to participants with lifetime musical activity. However, this procedure may introduce a poten-

tial arbitrary selection bias, which could affect the overall representativeness of the sample. In

future or replication studies, a 1:1 randomization approach should rather be used for sample

selection to better account for differences in confounding factors. 3. We considered a number

of potentially confounding variables, including reserve proxies, which is a strength of our

study. Nevertheless, other variables may be associated with a history of musical activity and

might relate to variations in local and global functional connectivity patterns, including occu-

pational, lifestyle, psychological and health-related characteristics. Albeit, we assessed several

of these characteristics (such as self-reported social activity, personality traits, subclinical
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depression and nutritional health status) and found no significant differences between the two

groups, a comprehensive investigation of variables not included in the present RSFC analyses

is warranted. 4. In the present study, musical activity was measured based on the self-reported

frequency of playing a musical instrument over the lifetime, hence, the operationalization of

this variable is not as ideal as it could be. More detailed information, e.g. on the type of musical

instrument, playing solo or multiple instruments, age of acquisition, and/or participation in

music groups, should be collected in cohort studies to better understand the association of

these differences in musical instrument engagement on the observed neural benefits associated

with musical activity in older age. This may also be a reason, why we were unable to detect

associations between lifetime musical activity and global RSFC within the pre-selected RSN in

the present study.

4.5 Conclusion

Our results indicate that playing a musical instrument during life relates to higher functional

connectivity of the MPFC with frontal and temporal regions that are partially associated with

the DMN. This finding suggests that preserved or enhanced RSFC between distant brain

regions associated with higher-order cognitive and motor processes could be a functional neu-

ral correlate of the benefits associated with a history of musical activity. While preserved brain

function may contribute to brain reserve and resilience in older age, further research is needed

to investigate whether this might help delay cognitive decline and the onset of pathological

conditions, including dementia. Overall, it can be concluded that the functional modulation/

re-organization of higher-order brain networks could be a promising avenue to identify poten-

tial neuroprotective correlates underlying musical activity in OA.
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