111 research outputs found

    Implication of the oep16-1 mutation in a flu-independent, singlet oxygen-regulated cell death pathway in Arabidopsis thaliana

    Get PDF
    Singlet oxygen is a prominent form of reactive oxygen species in higher plants. It is easily formed from molecular oxygen by triplet–triplet interchange with excited porphyrin species. Evidence has been obtained from studies on the flu mutant of Arabidopsis thaliana of a genetically determined cell death pathway that involves differential changes at the transcriptome level. Here we report on a different cell death pathway that can be deduced from the analysis of oep16 mutants of A. thaliana. Pure lines of four independent OEP16-deficient mutants with different cell death properties were isolated. Two of the mutants overproduced free protochlorophyllide (Pchlide) in the dark because of defects in import of NADPH:Pchlide oxidoreductase A (pPORA) and died after illumination. The other two mutants avoided excess Pchlide accumulation. Using pulse labeling and polysome profiling studies we show that translation is a major site of cell death regulation in flu and oep16 plants. flu plants respond to photooxidative stress triggered by singlet oxygen by reprogramming their translation toward synthesis of key enzymes involved in jasmonic acid synthesis and stress proteins. In contrast, those oep16 mutants that were prone to photooxidative damage were unable to respond in this way. Together, our results show that translation is differentially affected in the flu and oep16 mutants in response to singlet oxygen

    Characterization of plastid psbT sense and antisense RNAs

    Get PDF
    The plastid psbB operon is composed of the psbB, psbT, psbH, petB and petD genes. The psbN gene is located in the intergenic region between psbT and psbH on the opposite DNA strand. Transcription of psbN is under control of sigma factor 3 (SIG3) and psbN read-through transcription produces antisense RNA to psbT mRNA. To investigate on the question of whether psbT gene expression might be regulated by antisense RNA, we have characterized psbT sense and antisense RNAs. Mapping of 5â€Č and 3â€Č-ends by circular RT–PCR and /or 5â€Č-RACE experiments reveal the existence of two different sense and antisense RNAs each, one limited to psbT RNA and a larger one that covers, in addition, part of the psbB coding region. Sense and antisense RNAs seem to form double-stranded RNA/RNA hybrids as indicated by nuclease digestion experiments followed by RT–PCR amplification to reveal nuclease resistant RNA. Western immunoblotting using antibodies made against PSBT protein and primer extension analysis of different plastid mRNA species and psbT antisense RNA suggest that sequestering of psbT mRNA by hybrid formation results in translational inactivation of the psbT mRNA and provides protection against nucleolytic degradation of mRNA during photooxydative stress conditions

    The Outer Chloroplast Envelope Protein OEP16-1 for Plastid Import of NADPH:Protochlorophyllide Oxidoreductase A in Arabidopsis thaliana

    Get PDF
    The outer plastid envelope protein OEP16-1 was previously identiïŹed as an amino acid-selective channel protein and translocation pore for NADPH:protochlorophyllide oxidoreductase A (PORA). Reverse genetic approaches used to dissect these mutually not exclusive functions of OEP16-1 in planta have led to descriptions of different phenotypes resulting from the presence of several mutant lines in the SALK_024018 seed stock. In addition to the T-DNA insertion in the AtOEP16-1 gene, lines were puriïŹed that contain two additional T-DNA insertions and as yet unidentiïŹed point mutations. In a ïŹrst attempt to resolve the genetic basis of four different lines in the SALK_024018 seed stock, we used genetic transformation with the OEP16-1 cDNA and segregation analyses after crossing out presumed point mutations. We show that AtOEP16-1 is involved in PORA precursor import and by virtue of this activity confers photoprotection onto etiolated seedlings during greenin

    pH-Dependent mismatch discrimination of oligonucleotide duplexes containing 2â€Č-deoxytubercidin and 2- or 7-substituted derivatives: protonated base pairs formed between 7-deazapurines and cytosine

    Get PDF
    Oligonucleotides incorporating 2â€Č-deoxytubercidin (1a), its 2-amino derivative 2a and related 2-, or 7-substituted analogs (1d, 2b–d, 3 and 4) are synthesized. For this purpose, a series of novel phosphoramidites are prepared and employed in solid-phase synthesis. Hybridization experiments performed with 12mer duplexes indicate that 7-halogenated nucleosides enhance the duplex stability both in antiparallel and parallel DNA, whereas 2-fluorinated 7-deaza-2â€Č-deoxyadenosine residues destabilize the duplex structure. The 7-deazaadenine nucleosides 1a, 1d and their 2-amino derivatives 2a–d form stable base pairs with dT but also with dC and dG. The mispairing with dC is pH-dependent. Ambiguous base pairing is observed at pH 7 or under acid conditions, whereas base discrimination occurs in alkaline medium (pH 8.0). This results from protonated base pairs formed between 1a or 2a and dC under neutral or acid condition, which are destroyed in alkaline medium. It is underlined by the increased basicity of the pyrrolo[2,3-d]pyrimidine nucleosides over that of the parent purine compounds (pK(a) values: 1a = 5.30; 2a = 5.71; dA = 3.50)
    • 

    corecore