174 research outputs found
Tussen idealisme en wetenschap : van dood land naar levende natuur
Rede bij het afscheid als hoogleraar in het Natuurbeheer en de Plantenecologie aan Wageningen University op 31 maart 201
Short-term root and leaf decomposition of two dominant plant species in a Siberian tundra
In tundra ecosystems, global warming is expected to accelerate litter decomposition and to lead to shifts in vegetation composition. To understand these shifts, it is important to understand the interactions between global warming, vegetation composition, litter quality and decomposition in the tundra. In addition, it is important to consider root litter since roots are the major part of plant biomass in the tundra. In order to increase our understanding of decomposition, and root decomposition in particular, we performed a litter transplant experiment in northeastern Siberia, in which we measured mass loss for leaf and root litter (live and dead material) of the two dominant plant species, graminoid Eriophorum vaginatum and shrub Betula nana, in three vegetation types (E. vaginatum or B. nana dominated and mixed vegetation) during the growing season.Our results show that although leaf decomposition did not differ between the two species, root decomposition showed significant differences. Mass loss of live roots was higher for E. vaginatum than for B. nana, but mass loss of E. vaginatum dead roots was lowest. In addition, we found evidence for home-field advantage in litter decomposition: litter of a plant decomposed faster in vegetation where it was dominant. Mass loss rates of the litter types were significantly correlated with phosphorus content, rather than nitrogen content. This indicates that phosphorus limits decomposition in this tundra site.The low decomposition rate of B. nana live roots compared to E. vaginatum live roots suggests that the acceleration of decomposition in the Arctic may be partly counteracted by the expected expansion of shrubs. However, more information on litter input rates and direct effects of climate change on decomposition rates are needed to accurately predict the effects of climate change on carbon dynamics in tundra ecosystems.</p
Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems
Los autores de la UAM pertenecen al Terrestrial Ecology Group (TEG)Agricultural intensification is one of the main drivers of species loss worldwide, but there is still a lack of information about its effect on functional diversity of arable weed communities. Using a large-scale pan European study including 786 fields within 261 farms from eight countries, we analysed differences in the taxonomic and functional diversity of arable weeds assemblages across different levels of agricultural intensification. We estimated weed species frequency in each field, and collected species' traits (vegetative height, SLA and seed mass) from the TRY plant trait database. With this information, we estimated taxonomic (species richness), functional composition (community weighted means) and functional diversity (functional richness, evenness, divergence and redundancy). We used indicators of agricultural management intensity at the individual field scale (e.g. yield, inputs of nitrogen fertilizer and herbicides, frequency of mechanical weed control practices) and at the landscape scale surrounding the field (i.e. number of crop types, mean field size and proportion of arable land cover within a radius of 500 m from the sampling points). The effects of agricultural intensification on species and functional richness at the field scale were stronger than those of intensification at the landscape scale, and we did not observe evidence of interacting effects between the two scales. Overall, assemblages in more intensified areas had fewer species, a higher prevalence of species with ruderal strategies (low stature, high leaf area, light seeds), and lower functional redundancy. Maintaining the diversity of Europe's arable weed communities requires some simple management interventions, for example, reducing the high intensity of field-level agricultural management across Europe, which could be complemented by interventions that increase landscape complexity. A free Plain Language Summary can be found within the Supporting Information of this articl
Belowground DNA-based techniques: untangling the network of plant root interactions
Contains fulltext :
91591.pdf (publisher's version ) (Closed access)7 p
Bi-allelic <i>NIT1 </i>variants cause a brain small vessel disease characterized by movement disorders, massively dilated perivascular spaces, and intracerebral hemorrhage
Purpose: To describe a recessively inherited cerebral small vessel disease, caused by loss-of-function variants in Nitrilase1 (NIT1). Methods:We performed exome sequencing, brain magnetic resonance imaging, neuropathology, electron microscopy, western blotting, and transcriptomic and metabolic analyses in 7 NIT1-small vessel disease patients from 5 unrelated pedigrees. Results: The first identified patients were 3 siblings, compound heterozygous for the NIT1 c.727C>T; (p.Arg243Trp) variant and the NIT1 c.198_199del; p.(Ala68∗) variant. The 4 additional patients were single cases from 4 unrelated pedigrees and were all homozygous for the NIT1 c.727C>T; p.(Arg243Trp) variant. Patients presented in mid-adulthood with movement disorders. All patients had striking abnormalities on brain magnetic resonance imaging, with numerous and massively dilated basal ganglia perivascular spaces. Three patients had non-lobar intracerebral hemorrhage between age 45 and 60, which was fatal in 2 cases. Western blotting on patient fibroblasts showed absence of NIT1 protein, and metabolic analysis in urine confirmed loss of NIT1 enzymatic function. Brain autopsy revealed large electron-dense deposits in the vessel walls of small and medium sized cerebral arteries. Conclusion: NIT1-small vessel disease is a novel, autosomal recessively inherited cerebral small vessel disease characterized by a triad of movement disorders, massively dilated basal ganglia perivascular spaces, and intracerebral hemorrhage.</p
- …