74 research outputs found
Microscopic model of critical current noise in Josephson-junction qubits: Subgap resonances and Andreev bound states
We propose a microscopic model of critical current noise in
Josephson-junctions based on individual trapping-centers in the tunnel barrier
hybridized with electrons in the superconducting leads. We calculate the noise
exactly in the limit of no on-site Coulomb repulsion. Our result reveals a
noise spectrum that is dramatically different from the usual Lorentzian assumed
in simple models. We show that the noise is dominated by sharp subgap
resonances associated to the formation of pairs of Andreev bound states, thus
providing a possible explanation for the spurious two-level systems
(microresonators) observed in Josephson junction qubits [R.W. Simmonds et al.,
Phys. Rev. Lett. 93, 077003 (2004)]. Another implication of our model is that
each trapping-center will contribute a sharp dielectric resonance only in the
superconducting phase, providing an effective way to validate our results
experimentally. We derive an effective Hamiltonian for a qubit interacting with
Andreev bound states, establishing a direct connection between phenomenological
models and the microscopic parameters of a Fermionic bath.Comment: 11 pages, 8 figure
The BCS Functional for General Pair Interactions
The Bardeen-Cooper-Schrieffer (BCS) functional has recently received renewed
attention as a description of fermionic gases interacting with local pairwise
interactions. We present here a rigorous analysis of the BCS functional for
general pair interaction potentials. For both zero and positive temperature, we
show that the existence of a non-trivial solution of the nonlinear BCS gap
equation is equivalent to the existence of a negative eigenvalue of a certain
linear operator. From this we conclude the existence of a critical temperature
below which the BCS pairing wave function does not vanish identically. For
attractive potentials, we prove that the critical temperature is non-zero and
exponentially small in the strength of the potential.Comment: Revised Version. To appear in Commun. Math. Phys
Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.
Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour
Incommensurate ground state of double-layer quantum Hall systems
Double-layer quantum Hall systems possess interlayer phase coherence at
sufficiently small layer separations, even without interlayer tunneling. When
interlayer tunneling is present, application of a sufficiently strong in-plane
magnetic field drives a commensurate-incommensurate (CI)
transition to an incommensurate soliton-lattice (SL) state. We calculate the
Hartree-Fock ground-state energy of the SL state for all values of
within a gradient approximation, and use it to obtain the
anisotropic SL stiffness, the Kosterlitz-Thouless melting temperature for the
SL, and the SL magnetization. The in-plane differential magnetic susceptibility
diverges as when the CI transition is approached
from the SL state.Comment: 12 pages, 7 figures, to be published in Physical Review
Thomas-Fermi-Dirac-von Weizsacker hydrodynamics in laterally modulated electronic systems
We have studied the collective plasma excitations of a two-dimensional
electron gas with an arbitrary lateral charge-density modulation. The dynamics
is formulated using a previously developed hydrodynamic theory based on the
Thomas-Fermi-Dirac-von Weizsacker approximation. In this approach, both the
equilibrium and dynamical properties of the periodically modulated electron gas
are treated in a consistent fashion. We pay particular attention to the
evolution of the collective excitations as the system undergoes the transition
from the ideal two-dimensional limit to the highly-localized one-dimensional
limit. We also calculate the power absorption in the long-wavelength limit to
illustrate the effect of the modulation on the modes probed by far-infrared
(FIR) transmission spectroscopy.Comment: 27 page Revtex file, 15 Postscript figure
Review of biorthogonal coupled cluster representations for electronic excitation
Single reference coupled-cluster (CC) methods for electronic excitation are
based on a biorthogonal representation (bCC) of the (shifted) Hamiltonian in
terms of excited CC states, also referred to as correlated excited (CE) states,
and an associated set of states biorthogonal to the CE states, the latter being
essentially configuration interaction (CI) configurations. The bCC
representation generates a non-hermitian secular matrix, the eigenvalues
representing excitation energies, while the corresponding spectral intensities
are to be derived from both the left and right eigenvectors. Using the
perspective of the bCC representation, a systematic and comprehensive analysis
of the excited-state CC methods is given, extending and generalizing previous
such studies. Here, the essential topics are the truncation error
characteristics and the separability properties, the latter being crucial for
designing size-consistent approximation schemes. Based on the general order
relations for the bCC secular matrix and the (left and right) eigenvector
matrices, formulas for the perturbation-theoretical (PT) order of the
truncation errors (TEO) are derived for energies, transition moments, and
property matrix elements of arbitrary excitation classes and truncation levels.
In the analysis of the separability properties of the transition moments, the
decisive role of the so-called dual ground state is revealed. Due to the use of
CE states the bCC approach can be compared to so-called intermediate state
representation (ISR) methods based exclusively on suitably orthonormalized CE
states. As the present analysis shows, the bCC approach has decisive advantages
over the conventional CI treatment, but also distinctly weaker TEO and
separability properties in comparison with a full (and hermitian) ISR method
Hamiltonian theory of gaps, masses and polarization in quantum Hall states: full disclosure
I furnish details of the hamiltonian theory of the FQHE developed with Murthy
for the infrared, which I subsequently extended to all distances and apply it
to Jain fractions \nu = p/(2ps + 1). The explicit operator description in terms
of the CF allows one to answer quantitative and qualitative issues, some of
which cannot even be posed otherwise. I compute activation gaps for several
potentials, exhibit their particle hole symmetry, the profiles of charge
density in states with a quasiparticles or hole, (all in closed form) and
compare to results from trial wavefunctions and exact diagonalization. The
Hartree-Fock approximation is used since much of the nonperturbative physics is
built in at tree level. I compare the gaps to experiment and comment on the
rough equality of normalized masses near half and quarter filling. I compute
the critical fields at which the Hall system will jump from one quantized value
of polarization to another, and the polarization and relaxation rates for half
filling as a function of temperature and propose a Korringa like law. After
providing some plausibility arguments, I explore the possibility of describing
several magnetic phenomena in dirty systems with an effective potential, by
extracting a free parameter describing the potential from one data point and
then using it to predict all the others from that sample. This works to the
accuracy typical of this theory (10 -20 percent). I explain why the CF behaves
like free particle in some magnetic experiments when it is not, what exactly
the CF is made of, what one means by its dipole moment, and how the comparison
of theory to experiment must be modified to fit the peculiarities of the
quantized Hall problem
Where it All Began: Lending of Last Resort and the Bank of England During the Overend, Gurney Panic of 1866
The National Monetary Commission was deeply concerned with importing best practice. One important focus was the connection between the money market and international trade. It was said that Britain's lead in the market for acceptances originating in international trade was the basis of its sterling predominance. In this article, we use a so-far unexplored source to document the portfolio of bills that was brought up to the Bank of England for discount and study the behavior of the Bank of England during the crisis of 1866 (the so-called Overend-Gurney panic) when the Bank began adopting lending of last resort policies (Bignon, Flandreau and Ugolini 2011). We compare 1865 (a normal year) to 1866. Important findings include: (a) the statistical predominance of foreign bills in the material brought to the Bank of England; (b) the correlation between the geography of bills and British trade patterns; (c) a marked contrast between normal times lending and crisis lending in that main financial intermediaries and the shadow banking system only showed up at the Bank's window during crises; (d) the importance of money market investors (bills brokers) as chief conduit of liquidity provision in crisis; (e) the importance of Bank of England's supervisory policies in ensuring lending-of-lastresort operations without enhancing moral hazard. An implication of our findings is that Bank of England's ability to control moral hazard for financial intermediaries involved in acceptances was another reason for the rise of sterling as an international currency
- …