6,219 research outputs found

    A citation-based map of concepts in invasion biology

    Get PDF
    Invasion biology has been quickly expanding in the last decades so that it is now metaphorically flooded with publications, concepts, and hypotheses. Among experts, there is no clear consensus about the relationships between invasion concepts, and almost no one seems to have a good overview of the literature anymore. Similar observations can be made for other research fields. Science needs new navigation tools so that researchers within and outside of a research field as well as science journalists, students, teachers, practitioners, policy-makers, and others interested in the field can more easily understand its key ideas. Such navigation tools could, for example, be maps of the major concepts and hypotheses of a research field. Applying a bibliometric method, we created such maps for invasion biology. We analysed research papers of the last two decades citing at least two of 35 common invasion hypotheses. Co-citation analysis yields four distinct clusters of hypotheses. These clusters can describe the main directions in invasion biology and explain basic driving forces behind biological invasions. The method we outline here for invasion biology can be easily applied for other research fields

    Agencies in Transition: A Report on the Views of the Members of the Federal Senior Executive Service

    Get PDF
    Many think of leadership transition in government as something that happens only once every four or eight years. While presidential transitions are undoubtedly the largest in scope, leadership transition in government is a constant process. In fact, the average tenure of Senate-confirmed appointees is only 3.3 years, while appointees at executive departments generally spend only 2.8 years in a single post.In a federal government made up of departments and agencies as large and complex as any Fortune 500 company, a strong leadership team is critical to effective governance. Members of the Senior Executive Service (SES) serve as the primary link between political appointees and the broader federal workforce, operating and overseeing nearly every government activity. They play a significant role during leadership transitions, ensuring the continuity of operations within government. Members of the SES are also uniquely positioned to help incoming political leaders build on the positive reforms of the past, and provide insight from lessons learned that can inform success in the future.The National Academy saw the 2008 Presidential transition as an opportunity to draw upon the experience of the SES to find ways to strengthen the partnerships between political and career leaders and build a more efficient and effective government. The results of our study reinforced the critical role played by members of the SES, and revealed that the majority of these career leaders, though experienced in government, were relatively new to managing transition issues as executives.Key FindingsThe findings demonstrated that despite the newness of presidential transitions for most SES, they have a clear understanding about the role they must play in assisting new political appointees, the importance of forming an effective partnership, and their role in the process. At the same time, they wanted help to prepare for those roles, and were eager to engage in training and other activities that would promote success. These SES preferred to receive assistance in preparing for the transition through: (1) policy briefings; (2) discussions with their peers; (3) written materials; and (4) attendance at seminars or training sessions

    Intermediate-mass-ratio-inspirals in the Einstein Telescope. II. Parameter estimation errors

    Full text link
    We explore the precision with which the Einstein Telescope (ET) will be able to measure the parameters of intermediate-mass-ratio inspirals (IMRIs). We calculate the parameter estimation errors using the Fisher Matrix formalism and present results of a Monte Carlo simulation of these errors over choices for the extrinsic parameters of the source. These results are obtained using two different models for the gravitational waveform which were introduced in paper I of this series. These two waveform models include the inspiral, merger and ringdown phases in a consistent way. One of the models, based on the transition scheme of Ori & Thorne [1], is valid for IMBHs of arbitrary spin, whereas the second model, based on the Effective One Body (EOB) approach, has been developed to cross-check our results in the non-spinning limit. In paper I of this series, we demonstrated the excellent agreement in both phase and amplitude between these two models for non-spinning black holes, and that their predictions for signal-to-noise ratios (SNRs) are consistent to within ten percent. We now use these models to estimate parameter estimation errors for binary systems with masses 1.4+100, 10+100, 1.4+500 and 10+500 solar masses (SMs), and various choices for the spin of the central intermediate-mass black hole (IMBH). Assuming a detector network of three ETs, the analysis shows that for a 10 SM compact object (CO) inspiralling into a 100 SM IMBH with spin q=0.3, detected with an SNR of 30, we should be able to determine the CO and IMBH masses, and the IMBH spin magnitude to fractional accuracies of 0.001, 0.0003, and 0.001, respectively. We also expect to determine the location of the source in the sky and the luminosity distance to within 0.003 steradians, and 10%, respectively. We also assess how the precision of parameter determination depends on the network configuration.Comment: 21 pages, 5 figures. One reference corrected in v3 for consistency with published version in Phys Rev

    Visual Physiology of the Antarctic Amphipod Abyssorchomene plebs

    Get PDF
    Although the visual systems of animals living in the cold, dark water of the deep sea have been investigated for some time, little is known about vision in animals inhabiting polar oceans, where temperatures are even colder and irradiance fluctuates dramatically with ice cover and season. Physiology of the compound eye of the amphipod Abyssorchomene plebs (Gammaridea: Lysianassoidea), a common Antarctic benthic scavenger, was studied electrophysiologically by electroretinography. A. plebs has a monochromatic visual system with a spectral sensitivity maximum at 487 nm, and higher sensitivity at ultraviolet wavelengths than predicted by a visual pigment template. While irradiance sensitivity determined from V/log I curves is comparable to that of mesopelagic crustaceans, temporal resolution calculated from response waveform dynamics and as determined by critical flicker fusion frequency suggest that the A. plebs eye is slower than that of crustaceans from the deep sea. A. plebs photoreceptors are physiologically adapted for a slow lifestyle in a low-light environment, where maximizing photon capture occurs at the expense of detecting fast events in the visual scene

    Vision in the Hyperiid Amphipod Scina crassicornis

    Get PDF
    Light microscopy and extracellular electrophysiology were used to investigate eye structure and visual physiology of the hyperiid amphipod Scina crassicornis, a mesopelagic species that emits unusually short-wavelength luminescence (λmax=435-444 nm). The overall eye morphology is most similar to some previously described deep-dwelling amphipods, though not other hyperiids. Electroretinograms suggest that S. crassicornis possesses a relatively sensitive eye with slow temporal dynamics, and a monochromatic visual system (λmax=472 nm). Vision in S. crassicornis is well-suited for life in mesopelagic waters, and its short-wavelength luminescence does not play a role in intraspecific sexual signalling

    Actomyosin Pulsing in Tissue Integrity Maintenance during Morphogenesis

    Get PDF
    The actomyosin cytoskeleton is responsible for many changes in cell and tissue shape. For a long time, the actomyosin cytoskeleton has been known to exhibit dynamic contractile behavior. Recently, discrete actomyosin assembly/disassembly cycles have also been observed in cells. These so-called actomyosin pulses have been observed in a variety of contexts, including cell polarization and division, and in epithelia, where they occur during tissue contraction, folding, and extension. In epithelia, evidence suggests that actomyosin pulsing, and more generally, actomyosin turnover, is required to maintain tissue integrity during contractile processes. This review explores possible functions for pulsing in the many instances during which pulsing has been observed, and also highlights proposed molecular mechanisms that drive pulsing

    Forecasting resilience profiles of the run-up to regime shifts in nearly-one-dimensional systems

    Get PDF
    The forecasting of sudden, irreversible shifts in natural systems is a challenge of great importance, whose realization could allow pre-emptive action to be taken to avoid or mitigate catastrophic transitions, or to help systems adapt to them. In recent years, there have been many advances in the development of such early warning signals. However, much of the current toolbox is based around the tracking of statistical trends and therefore does not aim to estimate the future time scale of transitions or resilience loss. Metric-based indicators are also difficult to implement when systems have inherent oscillations which can dominate the indicator statistics. To resolve these gaps in the toolbox, we use additional system properties to fit parsimonious models to dynamics in order to predict transitions. Here, we consider nearly-one-dimensional systems—higher dimensional systems whose dynamics can be accurately captured by one-dimensional discrete time maps. We show how the nearly one-dimensional dynamics can be used to produce model-based indicators for critical transitions which produce forecasts of the resilience and the time of transitions in the system. A particularly promising feature of this approach is that it allows us to construct early warning signals even for critical transitions of chaotic systems. We demonstrate this approach on two model systems: of phosphorous recycling in a shallow lake, and of an overcompensatory fish population

    A conceptual map of invasion biology: Integrating hypotheses into a consensus network

    Get PDF
    Background and aims Since its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field’s current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. Results The resulting network was analysed with a link‐clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin’s clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). Significance The network visually synthesizes how invasion biology’s predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure – a conceptual map – that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography
    • 

    corecore