18 research outputs found

    Minimal Residual Disease in Acute Myeloid Leukemia: Old and New Concepts

    No full text
    Minimal residual disease (MRD) is of major importance in onco-hematology, particularly in acute myeloid leukemia (AML). MRD measures the amount of leukemia cells remaining in a patient after treatment, and is an essential tool for disease monitoring, relapse prognosis, and guiding treatment decisions. Patients with a negative MRD tend to have superior disease-free and overall survival rates. Considerable effort has been made to standardize MRD practices. A variety of techniques, including flow cytometry and molecular methods, are used to assess MRD, each with distinct strengths and weaknesses. MRD is recognized not only as a predictive biomarker, but also as a prognostic tool and marker of treatment efficacy. Expected advances in MRD assessment encompass molecular techniques such as NGS and digital PCR, as well as optimization strategies such as unsupervised flow cytometry analysis and leukemic stem cell monitoring. At present, there is no perfect method for measuring MRD, and significant advances are expected in the future to fully integrate MRD assessment into the management of AML patients

    Atypical cutaneous relapse of multiple myeloma

    No full text
    A 66-year-old patient, diagnosed κ light chains MM with t(11;14), presented before second cycle with bendamustine-dexamethasone. A complete remission was initially obtained with bortezomib-cyclophosphamide-dexamethasone and autologous HSCT. After relapse, he was successively treated with bortezomib-dexamethasone, carfilzomib-dexamethasone, daratumumab-dexamethasone and benda-mustine-dexamethasone

    Tracheotomy in ICU

    No full text
    International audienceTracheotomy is widely used in intensive care units, albeit with great disparities between medical teams in terms of frequency and modality. Indications and techniques are, however, associated with variable levels of evidence based on inhomogeneous or even contradictory literature. Our aim was to conduct a systematic analysis of the published data in order to provide guidelines. We present herein recommendations for the use of tracheotomy in adult critically ill patients developed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) method. These guidelines were conducted by a group of experts from the French Intensive Care Society (Societe de reanimation de langue francaise) and the French Society of Anesthesia and Intensive Care Medicine (Societe francaise d'anesthesie reanimation) with the participation of the French Emergency Medicine Association (Societe francaise de medecine d'urgence), the French Society of Otorhinolaryngology. Sixteen experts and two coordinators agreed to consider questions concerning tracheotomy and its practical implementation. Five topics were defined: indications and contraindications for tracheotomy in intensive care, tracheotomy techniques in intensive care, modalities of tracheotomy in intensive care, management of patients undergoing tracheotomy in intensive care, and decannulation in intensive care. The summary made by the experts and the application of GRADE methodology led to the drawing up of 8 formal guidelines, 10 recommendations, and 3 treatment protocols. Among the 8 formal guidelines, 2 have a high level of proof (Grade 1+/-) and 6 a low level of proof (Grade 2+/-). For the 10 recommendations, GRADE methodology was not applicable and instead 10 expert opinions were produced

    Accurate classification of plasma cell dyscrasias is achieved by combining artificial intelligence and flow cytometry

    No full text
    International audienceMonoclonal gammopathy of unknown significance (MGUS), smouldering multiple myeloma (SMM), and multiple myeloma (MM) are very common neoplasms. However, it is often difficult to distinguish between these entities. In the present study, we aimed to classify the most powerful markers that could improve diagnosis by multiparametric flow cytometry (MFC). The present study included 348 patients based on two independent cohorts. We first assessed how representative the data were in the discovery cohort (123 MM, 97 MGUS) and then analysed their respective plasma cell (PC) phenotype in order to obtain a set of correlations with a hypersphere visualisation. Cluster of differentiation (CD)27 and CD38 were differentially expressed in MGUS and MM (P = 95% when PC dyscrasias were suspected, without any misclassification between MGUS and SMM. We validated this algorithm in an independent cohort of PC dyscrasias (n = 87 MM, n = 41 MGUS). This artificial intelligence model is freely available online as a diagnostic tool application website for all MFC centers worldwide ()

    In vivo metabolomic study uncovers distinct metabolic phenotypes of host tissues and predicts oxidative state of acute myeloid leukemia

    No full text
    Background Metabolic adaptation is a hallmark of cancer including acute myeloid leukemia (AML). Tumor microenvironment is also described as an essential support of leukemic metabolism. We explored how systemic and tissue metabolism was rewired in leukemia-bearing mice and upon chemotherapy. Methods Using AML cell line- and primary patient-derived xenograft models, we developed in vivo metabolomics to uncover the metabolic pattern of 10 tissues including plasma, bone marrow, spleen, liver, adipose tissue, lung, pancreas, kidney, heart and muscle. Results In vivo targeted mass spectrometry allowed metabolic characterization of tissues from naĂŻve and AML-xenografted immunocompromised mice. AML xenotransplantation and cytarabine treatment induced AML cell type-dependent global changes in tissue metabolomes. Infiltration of high OxPHOS MOLM14 cells that are intrinsically chemoresistant, induced minor changes in tissue metabolomes. In contrast, low OxPHOS U937 xenograft led to major reprogramming of metabolic tissue niches for survival upon chemotherapy. Interestingly, plasma metabolite signatures could predict the oxidative phenotype of leukemic cells. Conclusion Major metabolic changes in host tissues play a crucial role in tumor xenotransplantation and define their OxPHOS state in AML. Since mitochondrial phenotype is an essential determinant of drug response in AML, plasma metabolite signatures might be novel biomarkers for patient stratification
    corecore