1,356 research outputs found

    p-wave Holographic Superconductors and five-dimensional gauged Supergravity

    Full text link
    We explore five-dimensional N=4{\cal N}=4 SU(2)×U(1)SU(2)\times U(1) and N=8{\cal N}=8 SO(6) gauged supergravities as frameworks for condensed matter applications. These theories contain charged (dilatonic) black holes and 2-forms which have non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question of interest is whether they also contain black holes with two-form hair with the required asymptotic to give rise to holographic superconductivity. We first consider the N=4{\cal N}=4 case, which contains a complex two-form potential AμνA_{\mu\nu} which has U(1) charge ±1\pm 1. We find that a slight generalization, where the two-form potential has an arbitrary charge qq, leads to a five-dimensional model that exhibits second-order superconducting transitions of p-wave type where the role of order parameter is played by AμνA_{\mu\nu}, provided q5.6q \gtrsim 5.6. We identify the operator that condenses in the dual CFT, which is closely related to N=4{\cal N}=4 Super Yang-Mills theory with chemical potentials. Similar phase transitions between R-charged black holes and black holes with 2-form hair are found in a generalized version of the N=8{\cal N}=8 gauged supergravity Lagrangian where the two-forms have charge q1.8q\gtrsim 1.8.Comment: 35 pages, 14 figure

    Generalising unit-refutation completeness and SLUR via nested input resolution

    Get PDF
    We introduce two hierarchies of clause-sets, SLUR_k and UC_k, based on the classes SLUR (Single Lookahead Unit Refutation), introduced in 1995, and UC (Unit refutation Complete), introduced in 1994. The class SLUR, introduced in [Annexstein et al, 1995], is the class of clause-sets for which unit-clause-propagation (denoted by r_1) detects unsatisfiability, or where otherwise iterative assignment, avoiding obviously false assignments by look-ahead, always yields a satisfying assignment. It is natural to consider how to form a hierarchy based on SLUR. Such investigations were started in [Cepek et al, 2012] and [Balyo et al, 2012]. We present what we consider the "limit hierarchy" SLUR_k, based on generalising r_1 by r_k, that is, using generalised unit-clause-propagation introduced in [Kullmann, 1999, 2004]. The class UC, studied in [Del Val, 1994], is the class of Unit refutation Complete clause-sets, that is, those clause-sets for which unsatisfiability is decidable by r_1 under any falsifying assignment. For unsatisfiable clause-sets F, the minimum k such that r_k determines unsatisfiability of F is exactly the "hardness" of F, as introduced in [Ku 99, 04]. For satisfiable F we use now an extension mentioned in [Ansotegui et al, 2008]: The hardness is the minimum k such that after application of any falsifying partial assignments, r_k determines unsatisfiability. The class UC_k is given by the clause-sets which have hardness <= k. We observe that UC_1 is exactly UC. UC_k has a proof-theoretic character, due to the relations between hardness and tree-resolution, while SLUR_k has an algorithmic character. The correspondence between r_k and k-times nested input resolution (or tree resolution using clause-space k+1) means that r_k has a dual nature: both algorithmic and proof theoretic. This corresponds to a basic result of this paper, namely SLUR_k = UC_k.Comment: 41 pages; second version improved formulations and added examples, and more details regarding future directions, third version further examples, improved and extended explanations, and more on SLUR, fourth version various additional remarks and editorial improvements, fifth version more explanations and references, typos corrected, improved wordin

    (De)Constructing a Natural and Flavorful Supersymmetric Standard Model

    Full text link
    Using the framework of deconstruction, we construct simple, weakly-coupled supersymmetric models that explain the Standard Model flavor hierarchy and produce a flavorful soft spectrum compatible with precision limits. Electroweak symmetry breaking is fully natural; the mu-term is dynamically generated with no B mu-problem and the Higgs mass is easily raised above LEP limits without reliance on large radiative corrections. These models possess the distinctive spectrum of superpartners characteristic of "effective supersymmetry": the third generation superpartners tend to be light, while the rest of the scalars are heavy.Comment: 36 pages, 4 figures ; v2: references added, expanded discussion of FCNC

    Multifield Dynamics in Higgs-otic Inflation

    Full text link
    In Higgs-otic inflation a complex neutral scalar combination of the h0h^0 and H0H^0 MSSM Higgs fields plays the role of inflaton in a chaotic fashion. The potential is protected from large trans-Planckian corrections at large inflaton if the system is embedded in string theory so that the Higgs fields parametrize a D-brane position. The inflaton potential is then given by a DBI+CS D-brane action yielding an approximate linear behaviour at large field. The inflaton scalar potential is a 2-field model with specific non-canonical kinetic terms. Previous computations of the cosmological parameters (i.e. scalar and tensor perturbations) did not take into account the full 2-field character of the model, ignoring in particular the presence of isocurvature perturbations and their coupling to the adiabatic modes. It is well known that for generic 2-field potentials such effects may significantly alter the observational signatures of a given model. We perform a full analysis of adiabatic and isocurvature perturbations in the Higgs-otic 2-field model. We show that the predictivity of the model is increased compared to the adiabatic approximation. Isocurvature perturbations moderately feed back into adiabatic fluctuations. However, the isocurvature component is exponentially damped by the end of inflation. The tensor to scalar ratio varies in a region r=0.080.12r=0.08-0.12, consistent with combined Planck/BICEP results.Comment: 35 pages, 11 figure

    Prey resources are equally important as climatic conditions for predicting the distribution of a broad-ranged apex predator

    Get PDF
    Aim A current biogeographic paradigm states that climate regulates species distributions at continental scales and that biotic interactions are undetectable at coarse-grain extents. However, advances in spatial modelling show that incorporating food resource distributions are important for improving model predictions at large distribution scales. This is particularly relevant to understand the factors limiting distribution of widespread apex predators whose diets are likely to vary across their range. Location Neotropical Central and South America Methods The harpy eagle (Harpia harpyja) is a large raptor, whose diet is largely comprised of arboreal mammals, all with broad distributions across Neotropical lowland forest. Here, we used a hierarchical modelling approach to determine the relative importance of abiotic factors and prey resource distribution on harpy eagle range limits. Our hierarchical approach consisted of the following modelling sequence of explanatory variables: (a) abiotic covariates, (b) prey resource distributions predicted by an equivalent modelling for each prey, (c) the combination of (a) and (b), and (d) as in (c) but with prey resources considered as a single prediction equivalent to prey species richness. Results Incorporating prey distributions improved model predictions but using solely biotic covariates still resulted in a high performing model. In the Abiotic model, Climatic Moisture Index (CMI) was the most important predictor, contributing 76 % to model prediction. Three-toed sloth (Bradypus spp.) was the most important prey resource, contributing 64 % in a combined Abiotic-Biotic model, followed by CMI contributing 30 %. Harpy eagle distribution had high environmental overlap across all individual prey distributions, with highest coincidence through Central America, eastern Colombia, and across the Guiana Shield into northern Amazonia. Main conclusions With strong reliance on prey distributions across its range, harpy eagle conservation programs must therefore consider its most important food resources as a key element in the protection of this threatened raptor

    A Stealth Supersymmetry Sampler

    Get PDF
    The LHC has strongly constrained models of supersymmetry with traditional missing energy signatures. We present a variety of models that realize the concept of Stealth Supersymmetry, i.e. models with R-parity in which one or more nearly-supersymmetric particles (a "stealth sector") lead to collider signatures with only a small amount of missing energy. The simplest realization involves low-scale supersymmetry breaking, with an R-odd particle decaying to its superpartner and a soft gravitino. We clarify the stealth mechanism and its differences from compressed supersymmetry and explain the requirements for stealth models with high-scale supersymmetry breaking, in which the soft invisible particle is not a gravitino. We also discuss new and distinctive classes of stealth models that couple through a baryon portal or Z' gauge interactions. Finally, we present updated limits on stealth supersymmetry in light of current LHC searches.Comment: 45 pages, 16 figure

    Birth weight and melanoma risk: a population-based case–control study

    Get PDF
    We investigated whether lower birth weight was associated with lower risk of melanoma later in life. This population-based case–control study included all incident cases of histologically verified invasive melanoma diagnosed until 31 December 2003 in the Norwegian population born between 1967 and 1986 (n=709). The control group without malignant disease was established by random sampling from the same source population as the cases (n=108 209). Data on birth weight, gender, mother's residence and parental age at the time of birth were collected from the Medical Birth Registry of Norway and data on cancer from the Cancer Registry of Norway. The Mantel–Haenszel test of linear trend showed no trend in risk across the birth weight categories: individuals in the highest quartile of birth weight (⩾3860 g) had an odds ratio (OR) of 1.19 (95% confidence interval, CI: 0.77–1.84) compared to individuals with birth weight <2500 g. The adjusted OR was 0.81 (95% CI: 0.52–1.26) for birth weight below 2500 g (exposed). Though not statistically significant, the results suggest that low birth weight might influence the risk of melanoma later in life

    Life Expectancy in a Large Cohort of Type 2 Diabetes Patients Treated in Primary Care (ZODIAC-10)

    Get PDF
    Background: Most longitudinal studies showed increased relative mortality in individuals with type 2 diabetes mellitus until now. As a result of major changes in treatment regimes over the past years, with more stringent goals for metabolic control and cardiovascular risk management, improvement of life expectancy should be expected. In our study, we aimed to assess present-day life expectancy of type 2 diabetes patients in an ongoing cohort study. Methodology and Principal Findings: We included 973 primary care type 2 diabetes patients in a prospective cohort study, who were all participating in a shared care project in The Netherlands. Vital status was assessed from May 2001 till May 2007. Main outcome measurement was life expectancy assessed by transforming actual survival time to standardised survival time allowing adjustment for the baseline mortality rate of the general population. At baseline, mean age was 66 years, mean HbA(1c) 7.0%. During a median follow-up of 5.4 years, 165 patients died (78 from cardiovascular causes), and 17 patients were lost to follow-up. There were no differences in life expectancy in subjects with type 2 diabetes compared to life expectancy in the general population. In multivariate Cox regression analyses, concentrating on the endpoints 'all-cause' and cardiovascular mortality, a history of cardiovascular disease: hazard ratio (HR) 1.71 (95% confidence interval (CI) 1.23-2.37), and HR 2.59 (95% CI 1.56-4.28); and albuminuria: HR 1.72 (95% CI 1.26-2.35), and HR 1.83 (95% CI 1.17-2.89), respectively, were significant predictors, whereas smoking, HbA(1c), systolic blood pressure and diabetes duration were not. Conclusions: This study shows a normal life expectancy in a cohort of subjects with type 2 diabetes patients in primary care when compared to the general population. A history of cardiovascular disease and albuminuria, however, increased the risk of a reduction of life expectancy. These results show that, in a shared care environment, a normal life expectancy is achievable in type 2 diabetes patients

    Single-Scale Natural SUSY

    Get PDF
    We consider the prospects for natural SUSY models consistent with current data. Recent constraints make the standard paradigm unnatural so we consider what could be a minimal extension consistent with what we now know. The most promising such scenarios extend the MSSM with new tree-level Higgs interactions that can lift its mass to at least 125 GeV and also allow for flavor-dependent soft terms so that the third generation squarks are lighter than current bounds on the first and second generation squarks. We argue that a common feature of almost all such models is the need for a new scale near 10 TeV, such as a scale of Higgsing or confinement of a new gauge group. We consider the question whether such a model can naturally derive from a single mass scale associated with supersymmetry breaking. Most such models simply postulate new scales, leaving their proximity to the scale of MSSM soft terms a mystery. This coincidence problem may be thought of as a mild tuning, analogous to the usual mu problem. We find that a single mass scale origin is challenging, but suggest that a more natural origin for such a new dynamical scale is the gravitino mass, m_{3/2}, in theories where the MSSM soft terms are a loop factor below m_{3/2}. As an example, we build a variant of the NMSSM where the singlet S is composite, and the strong dynamics leading to compositeness is triggered by masses of order m_{3/2} for some fields. Our focus is the Higgs sector, but our model is compatible with a light stop (with the other generation squarks heavy, or with R-parity violation or another mechanism to hide them from current searches). All the interesting low-energy mass scales, including linear terms for S playing a key role in EWSB, arise dynamically from the single scale m_{3/2}. However, numerical coefficients from RG effects and wavefunction factors in an extra dimension complicate the otherwise simple story.Comment: 32 pages, 3 figures; version accepted by JHE
    corecore