27,181 research outputs found

    A deeper insight into quantum state transfer from an information flux viewpoint

    Full text link
    We use the recently introduced concept of information flux in a many-body register in order to give an alternative viewpoint on quantum state transfer in linear chains of many spins.Comment: 6 pages, 3 figures, RevTeX

    Performance of a 12-GHz fiber-optic system for beam-waveguide antenna stability testing

    Get PDF
    A 12-GHz fiber-optic system is a critical part of a test configuration that was proposed for measuring the fractional frequency stability of the Deep Space Station (DSS)-13 beam-waveguide (BWG) antenna. This fiber-optic system is used to carry Ku-band (12-GHz) signals from a reference antenna to the DSS-13 BWG pedestal room. Tests performed only on the fiber-optic system portion of the overall test configuration showed that the 12-GHz fiber-optic system (installed at DSS-13) has a frequency stability of about 1.1 x 10(exp -16) for sampling time tau = 1000 sec for a nighttime run. This preliminary result establishes the lowest noise floor that can probably be achieved for the test configuration that will be used to measure the frequency stability of the DSS-13 BWG antenna

    Heavy-heavy form factors and generalized factorization

    Get PDF
    We reanalyze B -> D pi and B -> K J/psi data to extract a set of parameters which give the relevant hadronic matrix elements in terms of factorized amplitudes. Various sources of theoretical uncertainties are studied, in particular those depending on the model adopted for the form factors. We find that the fit to the B -> D pi branching ratios substantially depends on the model describing the Isgur-Wise function and on the value of its slope. This dependence can be reduced by substituting the BR(B -> D pi) with suitable ratios of non-leptonic to differential semileptonic BRs. In this way, we obtain a model-independent determination of these parameters. Using these results, the B -> D form factors at q^2=M_pi^2 can be extracted from a fit of the BR(B -> D pi). The comparison between the form factors obtained in this way and the corresponding measurements in semileptonic decays can be used as a test of (generalized) factorization free from the uncertainties due to heavy-heavy form factor modeling. Finally, we present predictions for yet-unmeasured D pi and D K branching ratios and extract f_{D_s} and f_{D_s^*} from B -> DD_s decays. We find f_{D_s} = 270 +- 45 MeV and f_{D_s^*}=260 +- 40 MeV, in good agreement with recent measurements and lattice calculations.Comment: 20 pages, 16 ps/eps files, uses epsfig.sty; exp. numbers update

    Charming Penguins in B decays

    Get PDF
    Full expressions of the Bd0→π+π−B^0_d \to \pi^+ \pi^- and Bd0→π0π0B^0_d \to \pi^0 \pi^0 amplitudes, given in terms of matrix elements of operators of the effective weak Hamiltonian, are used to study the dependence of the relevant branching ratios on the different contributions. The uncertainty in the extraction of the weak phase α\alpha from the measurement of the time-dependent asymmetry in Bd0→π+π−B^0_d \to \pi^+ \pi^- decays is also analyzed. We find that, among several effects which may enhance the Bd0→π0π0B^0_d \to \pi^0 \pi^0 branching ratio, the most important is due to ``charming penguin" diagrams that have never been studied before. These diagrams easily increase BR(Bd0→π0π0)BR(B^0_d \to \pi^0 \pi^0) up to a value of 1−3×10−61-3 \times 10^{-6}. The same effect produces, however, a large error in the extraction of α\alpha from the measurement of the Bd0→π+π−B^0_d \to \pi^+ \pi^- time-dependent asymmetry. We show that it is possible to determine charming-penguin amplitudes from the experimental measurement of many decay rates. Their effect is impressive in B+→π+K0B^+ \to \pi^+ K^0 and Bd0→K+π−B^0_d \to K^+ \pi^- decays, where charming-penguin contributions easily give values of BR(B+→π+K0)BR(B^+ \to \pi^+ K^0) and BR(Bd0→K+π−)BR(B^0_d \to K^+ \pi^-) of about 1×10−51 \times 10^{-5}. Among other possibilities, we also suggest to use Bd0→K0Kˉ0B^0_d \to K^0 \bar K^0, the BR of which can be as large as 2−3×10−62-3 \times 10^{-6}, to determine the size of charming-penguin amplitudes.Comment: LaTeX, 28 pages, 8 figure

    Two Body B Decays, Factorization and LambdaQCD/mb Corrections

    Full text link
    By using the recent experimental measurements of B -> pi pi and B -> K pi branching ratios, we find that the amplitudes computed at the leading order of the LambdaQCD/mb expansion disagree with the observed BRs, even taking into account the uncertainties of the input parameters. Beyond the leading order, Charming and GIM penguins allow to reconcile the theoretical predictions with the data. Because of these large effects, we conclude, however, that it is not possible, with the present theoretical and experimental accuracy, to determine the CP violation angle gamma from these decays. We compare our results with those obtained with the parametrization of the chirally enhanced non-perturbative contributions by BBNS. We also predict large asymmetries for several of the particle--antiparticle BRs, in particular BR(B+ -> K+ pi0), BR(Bd -> K+ pi-) and BR(Bd -> pi+ pi-).Comment: 14 pages 3 figures uses aippro
    • …
    corecore