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Abstract

Full expressions of the B0
d → π+π− and B0

d → π0π0 amplitudes, given in terms
of matrix elements of operators of the effective weak Hamiltonian, are used to study
the dependence of the relevant branching ratios on the different contributions. The
uncertainty in the extraction of the weak phase α from the measurement of the time-
dependent asymmetry in B0

d → π+π− decays is also analyzed. We find that, among
several effects which may enhance the B0

d → π0π0 branching ratio, the most important
is due to “charming penguin” diagrams that have never been studied before. These
diagrams easily increase BR(B0

d → π0π0) up to a value of 1–3 × 10−6. The same
effect produces, however, a large error in the extraction of α from the measurement of
the B0

d → π+π− time-dependent asymmetry. We show that it is possible to determine
charming-penguin amplitudes from the experimental measurement of many decay rates.
Their effect is impressive in B+ → π+K0 and B0

d → K+π− decays, where charming-
penguin contributions easily give values of BR(B+ → π+K0) and BR(B0

d → K+π−)
of about 1× 10−5. Among other possibilities, we also suggest to use B0

d → K0K̄0, the
BR of which can be as large as 2–3× 10−6, to determine the size of charming-penguin
amplitudes.
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1 Introduction

The study of B0
d → ππ (B̄0

d → ππ) decays is of paramount importance for our un-
derstanding of CP-violation in the Standard Model and beyond. In particular the
measurement of the time-dependent asymmetry

A(t) =
N(B0

d → π+π−)(t) − N(B̄0
d → π+π−)(t)

N(B0
d → π+π−)(t) + N(B̄0

d → π+π−)(t)

=
(1 − |λ|2) cos(∆Mdt) − 2Imλ sin(∆Mdt)

1 + |λ|2 (1)

may allow the extraction of the CP-violating phase α, see for example [1]. The cleanest
method to extract sin 2α is from the measurement of the asymmetry, combined with
the separate determination of the I = 0 and I = 2 decay amplitudes, including the
relative phase [2]. These can be obtained by measuring the B+ → π+π0, B0

d → π+π−

and B0
d → π0π0 (and the corresponding ones in the B̄0

d case) branching ratios. With
these measurements, we get rid of our ignorance of the hadronic matrix elements of the
weak Hamiltonian. Unfortunately, most of the theoretical analyses tend to predict a
very small B0

d → π0π0 branching ratio, thus making the model-independent extraction
of sin 2α impossible in practice.

If sin 2α has to be extracted from B0
d → π+π− only, the main uncertainty comes

from the contribution proportional to λt = VtdV
⋆
tb, which is usually called “penguin

pollution”. In several studies, the decay rates and the uncertainty of sin 2α have been
estimated by using some specific model to evaluate the hadronic matrix elements of
the four-fermion operators entering the effective weak Hamiltonian [3]–[5]. In the most
popular approaches the amplitudes have been computed by assuming the factorization
hypothesis. The matrix elements of the weak currents necessary for the evaluation
of the factorized amplitudes are then taken from a specific quark model or from the
HQET [6]–[8].

In this paper, we present a “model-independent” analysis of the uncertainty on
sin 2α and of the ratio R = Γ(B0

d → π0π0)/Γ(B0
d → π+π−). By “model-independent”

we mean that we do not make specific assumptions on the hadronic matrix elements
of the operators, such as factorization or the absence of final state interactions (FSI).
On the basis of simple “qualitative” physical considerations, we allow, instead, the
matrix elements to vary within certain “reasonable” ranges, and check the stability of
the results against such variations. This is particularly relevant for R, because of the
delicate cancellations occurring between different amplitudes present in the B0

d → π0π0

case. Indeed, for this decay, the assumption of factorization and of the absence of FSI,
or any approximation used to predict the value of the amplitude, may lead to an
underestimate of the value of the decay rate.

Our calculations are based on complete expressions of the decays amplitudes for
B+ → π+π0, B0

d → π+π− and B0
d → π0π0, given in terms of diagrams representing

Wick contractions of the operators of the effective Hamiltonian between the relevant
external states. These formulae allow us to clarify assumptions and approximations
usually made to evaluate the amplitudes, which have not been spelt explicitly in pre-
vious studies. In particular, we show the presence of diagrams, involving operators
containing charmed quarks (defined as Q1 and Q2 in sec. 2) that contribute to the
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penguin pollution, and that have never been considered before. We call these dia-
grams “charming penguins”.

Among several effects which are able to enhance the B0
d → π0π0 branching ratio,

the most remarkable is due precisely to charming penguins. Their contribution may
increase the estimate of BR(B0

d → π0π0) up to a value of 1–3 × 10−6. The reason
is that, unlike the case of the penguin operators Q3–Q10 which have small Wilson
coefficients (of order αs/12π ln(m2

t /µ
2)), the coefficients of Q1 and Q2 are of O(1) and

there is no reason to believe the corresponding matrix elements to be small. Charming
penguins are also relevant for the B0

d → π+π− amplitude and may give a large shift
∆ = sin 2αeff−sin 2α ∼ 0.4–0.8 between the physical value of sin 2α and the “effective”
value, sin 2αeff , which can be extracted from the experimental measurement of Imλ.
As a comparison, when charming penguins are not included, the typical value is ∆ ∼
0.1. As ∆ increases, however, also BR(B0

d → π0π0) becomes larger, thus opening the
possibility of extracting sin 2α with the isospin analysis proposed in ref. [2].

We finally show that many decay rates are expected to be dominated by charming-
penguin diagrams. Among the various possibilities, we consider B0

d → K0K̄0, B+ →
π+K0 and B0

d → K+π− decays. In these cases, we give explicit formulae for the
amplitudes, show that the largest contributions are those expected from charming
penguins and estimate the corresponding branching ratios.

The most impressive effect of charming penguins is found in B+ → π+K0 and
B0

d → K+π− decays. Assuming reasonable values for the charming-penguin contri-
butions, we find that their branching ratios may even become larger than BR(B0

d →
π+π−). This observation is particularly interesting because, in absence of charming-
penguin diagrams, the B+ → π+K0 and B0

d → K+π− rates turn out to be very
small either because there is a Cabibbo suppression or because the non-Cabibbo sup-
pressed terms come from penguin operators which have rather small Wilson coeffi-
cients (unless the corresponding matrix elements are exceedingly large). While fin-
ishing this analysis, we were informed that the CLEO collaboration has measured
BR(B0

d → K+π−) = (1.5+0.5
−0.4 ± 0.2) × 10−5 [9]. The prediction that charming-penguin

diagrams are important and give large B+ → π+K0 and B0
d → K+π− decay rates is

supported by this measurement. By using the experimental information, we predict
BR(B+ → π+K0) ∼ 1 × 10−5 and we call for a search of this decay mode.

Other interesting decay channels, where charming penguins are expected to play
an important role, such as B0

d → π0η (or η′), B0
d → φK0 or B0

d → ηη decays, will be
extensively discussed elsewhere [10].

The plan of this paper is the following. In section 2, we introduce the effective
Hamiltonian given in terms of four-fermion operators, and of the corresponding Wilson
coefficients; we also define the full set of diagrams in terms of which the B → ππ ampli-
tudes can be expressed; the final formulae of the different amplitudes are given at the
end of this section. Formulae and approximations for the B0

d → K0K̄0, B+ → π+K0

and B0
d → K+π− amplitudes are discussed in section 3. In section 4, we present several

physical arguments which are used to guide us in estimating the matrix elements; we
also explain the main criteria used in the numerical analysis. In section 5, we give and
discuss the main numerical results for R, sin 2α and for the B0

d → K0K̄0, B+ → π+K0

and B0
d → K+π− branching ratios.
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2 Relevant formulae for B → ππ decays

The effective weak Hamiltonian relevant for B → ππ decays is given by

H∆B=1
eff = λu

GF√
2

[(

C1(µ) (Qu
1(µ) − Q1(µ)) + C2(µ) (Qu

2(µ) − Q2(µ))
)

+ τ ~C(µ) · ~Q(µ)
]

(2)

where ~Q(µ) = (Q1(µ), Q2(µ), . . . , Q10(µ)), ~C(µ) = (C1(µ), C2(µ), . . . , C10(µ)), λu =
VudV

⋆
ub and similarly λc and λt; τ = −λt/λu and µ is the renormalization scale of

the operators Qi. A convenient basis of operators [11]–[14], when QCD and QED
corrections are taken into account, is

Qu
1 = (b̄d)(V −A)(ūu)(V −A)

Qu
2 = (b̄u)(V −A)(ūd)(V −A)

Q1 = (b̄d)(V −A)(c̄c)(V −A)

Q2 = (b̄c)(V −A)(c̄d)(V −A)

Q3,5 = (b̄d)(V −A)

∑

q

(q̄q)(V ∓A)

Q4 =
∑

q

(b̄q)(V −A)(q̄d)(V −A) (3)

Q6 = −2
∑

q

(b̄q)(S+P )(q̄d)(S−P )

Q7,9 =
3

2
(b̄d)(V −A)

∑

q

eq(q̄q)(V ±A)

Q8 = −3
∑

q

eq(b̄q)(S+P )(q̄d)(S−P )

Q10 =
3

2

∑

q

eq(b̄q)(V −A)(q̄d)(V −A)

where the subscripts (V ±A) and (S±P ) indicate the chiral structures and eq denotes
the quark electric charge (eu = 2/3, ed = −1/3, etc.). The sum over the quarks q runs
over the active flavours at the scale µ.

Wick contractions of Heff between hadronic states give rise to the diagrams shown
in figs. 1–2: these are “Disconnected Emission” (DE), denoted also as T or T ′ in
ref. [15]; the colour suppressed (non-factorizable) “Connected Emission” (CE), de-
noted also as C or C ′; “Disconnected Annihilation” (DA), denoted also as A or A′;
“Connected Annihilation” (CA), denoted also as E or E′; “Disconnected Penguin”
(DP ), “Connected Penguin” (CP ), “Disconnected Penguin Annihilation” (DPA),
“Connected Penguin Annihilation” (CPA). We assume SU(2) isospin symmetry. For
penguin diagrams, we introduce a label which identifies the quark flavour in the pen-
guin loop. Thus, for example, DP (s) denotes the disconnected penguin diagram DP
of fig. 2, with a strange quark in the internal loop (a similar notation is adopted also
for CP , DPA and CPA). Since we do not distinguish up and down quarks, we simply
call DP (CP , DPA and CPA) those diagrams with an up or a down quark in the
loop. In eq. (3), different Dirac structures appear, namely L = (V − A) × (V − A),

3



DE CE

DA CA

Figure 1: Non-penguin diagrams. The dashed line represents the four-fermion operator.

DP CP

DPA CPA

Figure 2: Penguin diagrams.
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R = (V −A)× (V + A) and S = (S + P )× (S −P ) 1. Thus, for example, the notation
CEL and CES denote the connected emission diagrams with a (V − A) × (V − A)
or (S + P ) × (S − P ) operator inserted, respectively. We are now ready to give the
complete expressions for the decay amplitudes under study. It is convenient to write
their ∆I = 3/2 and ∆I = 1/2 components separately

A+0 = A(B+ → π+π0) =
GF√

2
λu

3√
2
A2 , (4)

A+− = A(B0
d → π+π−) =

GF√
2
λu (A2 − A0) , (5)

A00 = A(B0
d → π0π0) =

GF√
2
λu (

√
2A2 +

1√
2
A0) , (6)

where
A2 = Au

2 + τAt
2 , A0 = Au

0 + τAt
0 , (7)

and

Au
2 = −1

3
[C1 + C2] (DEL + CEL) (8)

At
2 = −1

2
[C7 (DER + CER) − 2C8 (DES + CES)

+ (C9 + C10) (DEL + CEL)] , (9)

Au
0 = C1

[

−1

3
DEL +

2

3
CEL + DAL + (DPL − DPL(c)) + (DPAL − DPAL(c))

]

+ C2

[

2

3
DEL − 1

3
CEL + CAL + (CPL − CPL(c)) + (CPAL − CPAL(c))

]

(10)

At
0 = C1 [DPL(c) + DPAL(c)] + C2 [CPL(c) + CPAL(c)]

+ C3 [CEL + CAL + 2DAL + CPL + 2DPL + DPL(c) + DPL(s)

+ CPAL + 2DPAL + DPAL(c) + DPAL(s)]

+ C4 [DEL + 2CAL + DAL + 2CPL + CPL(c) + CPL(s) + DPL

+ 2CPAL + CPAL(c) + CPAL(s) + DPAL]

+ C5 [CER + CAR + 2DAR + CPR + 2DPR + DPR(c) + DPR(s)

+ CPAR + 2DPAR + DPAR(c) + DPAR(s)]

− 2C6 [DES + 2CAS + DAS + 2CPS + CPS(c) + CPS(s) + DPS (11)

+ 2CPAS + CPAS(c) + CPAS(s) + DPAS]

+
1

2
C7 [CER − DER − CAR + DAR − CPR + DPR + 2DPR(c) − DPR(s)

− CPAR + DPAR + 2DPAR(c) − DPAR(s)]

+ C8 [CES − DES − CAS + DAS − CPS − 2CPS(c) + CPS(s) + DPS

− CPAS − 2CPAS(c) + CPAS(s) + DPAS]

1 By Fierz rearrangement we could have adopted a basis where only (V − A) × (V ± A) structures are
present. We prefer however to work with operators written in terms of colour-singlet bilinears.
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+
1

2
C9 [CEL − DEL − CAL + DAL − CPL + DPL + 2DPL(c) − DPL(s)

− CPAL + DPAL + 2DPAL(c) − DPAL(s)]

− 1

2
C10 [CEL − DEL − CAL + DAL − CPL − 2CPL(c) + CPL(s) + DPL

− CPAL − 2CPAL(c) + CPAL(s) + DPAL] .

In eqs. (8)–(11) we have not shown explicitly the argument µ of the Wilson coefficients
C1, . . . , C10. Notice that also the diagrams are µ-dependent, since they correspond
to contractions of renormalized operators Qi(µ). For the fields we have assumed the
standard convention B+ = b̄u, B0

d = b̄d, π+ = ud̄, π− = −dū and π0 = −1/
√

2(uū −
dd̄).

In Au
0 , penguin diagrams always appear in the GIM combinations DPL − DPL(c),

DPAL−DPAL(c), . . . (in the following we denote these combinations as GIM-penguins).
Had we taken mt ≪ MW and a renormalization scale µ larger than the top quark mass,
i.e. mt ≪ µ ≪ MW , similar GIM combinations would have appeared in At

0, namely
DPL(t)−DPL(c), etc. Since the physical value of mt is so large, the diagrams DPL(t),
CPL(t), etc. are replaced by complicated structures. These arise from the contractions
of the penguin and electro-penguin operators Q3–Q10, originated in Heff when we
remove the top quark from the effective theory. In the literature, At

0 only is identified
as penguin pollution. We want to stress again that in the effective theory there are
“penguin operators” Q3–Q10, which originate from the imperfect GIM cancellation oc-
curring when µ ≪ mt and “penguin diagrams” which arise from the Wick contractions
of all the operators of Heff .

The coefficients of the penguin operators Q3–Q10 are of order αs/12π ln(m2
t /µ

2)
and contain the short distance contribution (from scales between µ and mt) of the
virtual top and charm quarks. For µ ∼ mb, these coefficients are rather small, e.g. the
dominant term is due to Q6, for which C6/C2 ∼ −0.03. Thus, unless the corresponding
matrix elements are very large, the penguin operators are not expected to give large
corrections, at least in the B0

d → π+π− case. In the B0
d → π0π0 case, the relative

correction due to penguin operators, Q6 in particular, may be more important due to
the large cancellations present in the amplitude (the so called “colour suppression” to
be discussed below).

This is not the end of the story, however. In At
0 there are other terms, specifically

those in the first line of eq. (11). These terms, denoted as “charming penguins”, come
from penguin contractions of the operators Q1 and Q2, and have to be understood
as long distance contributions in the matrix elements of these operators. Because of
the unitarity relation λc = −λu − λt, they give contributions to both Au

0 , in the GIM
combination DPL-DPL(c), and to At

0. Unlike the case of the penguin operators Q3–
Q10, the coefficients of Q1 and Q2 are of O(1) and, since there is no reason to believe
the corresponding matrix elements to be small 2, they are potentially relevant even for
the B0

d → π+π− amplitude. On the other hand We notice that their contribution can
be further enhanced by the factor |τ | ∼ 2.

Penguin diagrams are also present in Au
0 and can alter in A+− and A00 the relative

size of the term proportional to λu with respect to that proportional to λt. This can

2 This is true in spite of the fact that, for (V − A) × (V − A) operators, penguin diagrams vanish if we
assume factorization, as demonstrated by the important role that they are expected to play in kaon decays.
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be seen by looking to the expression of λ introduced in eq. (1) in terms of the different
amplitudes

λ =
q

p

A
+−

A+−
=

q

p

λ⋆
u

λu

1 + τ⋆(At
2 − At

0)/(A
u
2 − Au

0)

1 + τ(At
2 − At

0)/(A
u
2 − Au

0)
, (12)

where

q

p
=

VtdV
⋆
tb

V ⋆
tdVtb

=
1 − ρ − iη

1 − ρ + iη
= e−2iβ

λ⋆
u

λu
=

VubV
⋆
ud

VudV
⋆
ub

=
ρ − iη

ρ + iη
= e−2iγ

τ = −1 − ρ − iη

ρ + iη
(13)

ρ and η being the CKM parameters in the Wolfenstein parametrization [16] and β+γ =
π − α.

At this point we have all the formulae needed for the study of the uncertainties on
sin 2α and in the calculation of R.

3 B
0
d

→ K
0
K̄

0, B
+

→ π
+
K

0 and B
0
d

→ K
+
π

−

We now show that the B0
d → K0K̄0, B+ → π+K0 and B0

d → K+π− amplitudes are
dominated by GIM- and charming-penguin diagrams. Let us consider the three cases
separately. For simplicity, all the formulae in this section are computed in the SU(3)
symmetric limit, e.g. DPL(s) = DPL.

B0
d → K0K̄0 We start by studying this case for which all the relevant quantities

have already been defined. The amplitude is dominated by GIM and charming-penguin
diagrams because emission and annihilation diagrams are only produced by the inser-
tion of the operators Q3–Q10 which have very small Wilson coefficients. By defining
A(B0

d → K0K̄0) = λuGF /
√

2 × AK , the complete expression of AK is given by

AK = C1 [(DPL − DPL(c)) + τDPL(c) + (DPA − DPAL(c)) + τDPAL(c)]

+ C2 [(CPL − CPL(c)) + τCPL(c) + (CPA − CPAL(c)) + τCPAL(c)]

+ τ {C3 [CEL + CAL + 2DAL + CPL + 3DPL + DPL(c)

+ CPAL + 3DPAL + DPAL(c)]

+ C4 [DEL + 2CAL + DAL + 3CPL + CPL(c) + DPL

+ 3CPAL + CPAL(c) + DPAL]

+ C5 [CER + CAR + 2DAR + CPR + 3DPR + DPR(c)

+ CPAR + 3DPAR + DPAR(c)]

− 2C6 [DES + 2CAS + DAS + 3CPS + CPS(c) + DPS

+ 3CPAS + CPAS(c) + DPAS ] (14)

+
1

2
C7 [−CER − CAR − 2DAR − CPR + 2DPR(c)

− CPAR + 2DPAR(c)]

+ C8 [DES + 2CAS + DAS − 2CPS(c) + DPS

7



− 2CPAS(c) + DPAS ]

+
1

2
C9 [−CEL − CAL − 2DAL − CPL + 2DPL(c)

− CPAL + 2DPAL(c)]

− 1

2
C10 [DEL + 2CAL + DAL − 2CPL(c) + DPL

− 2CPAL(c) + DPAL]} .

By neglecting all penguin-operator contributions we get

AK = C1 [(DPL − DPL(c)) + τDPL(c) + (DPA − DPAL(c)) + τDPAL(c)]

+ C2 [(CPL − CPL(c)) + τCPL(c) + (CPA − CPAL(c)) + τCPAL(c)] .(15)

This shows that unless the matrix elements of penguin operators, Q6 for example, are
exceedingly large (much larger than their estimates in the factorization hypothesis [5]),
the amplitude is dominated by GIM- and charming-penguin diagrams. Equation (15)
is only given to display the relevant terms; in all our numerical calculations we always
used the complete expressions for all the amplitudes.

B+ → π+K0 In order to study B+ → π+K0 and B0
d → K+π− we have to in-

troduce new quantities. For these decays, the operator Qu
1 is replaced by Q′u

1 =
(b̄s)(V −A)(ūu)(V −A) with a Wilson coefficient C ′

1 = C1, and similarly for all the other
operators in (3): this comes from the fact that we are considering now ∆B = −∆S = 1
transitions instead of the ∆B = ∆D = 1 ones of sec. 2. We also define λ′

u = VusV
⋆
ub

and similarly λ′
c and λ′

t: λ′
u is of O(λ4) whereas λ′

c and λ′
u are of O(λ2), where λ ∼ 0.22

is the sine of the Cabibbo angle in the Wolfenstein approximation. With the exception
of λ′

u,c,t, we will omit the superscript ′ for the rest of this section. We write

A(B+ → π+K0) =
GF√

2

(

λ′
uAu

+ + λ′
cA

c
+ + λ′

tA
t
+

)

, (16)

where

Au
+ = C1 [CAL + DPL] + C2 [DAL + CPL]

Ac
+ = C1DPL(c) + C2CPL(c)

At
+ = −C3 [CEL + CAL + CPL + 3DPL + DPL(c)]

− C4 [DEL + DAL + 3CPL + CPL(c) + DPL]

− C5 [CER + +CAR + CPR + 3DPR + DPR(c)]

+ 2C6 [DES + DAS + 3CPS + CPS(c) + +DPS ] (17)

− 1

2
C7 [−CER + 2CAR − CPR + 2DPR(c)]

− C8 [DES − 2DAS − 2CPS(c) + DPS ]

− 1

2
C9 [−CEL + 2CAL − CPL + 2DPL(c)]

− 1

2
C10 [−DEL + 2DAL + 2CPL(c) − DPL] .

8



By neglecting all penguin-operator contributions and Cabibbo suppressed terms we get

A(B+ → π+K0) =
GF√

2
λ′

cA
c
+ =

GF√
2
λ′

c [C1DPL(c) + C2CPL(c)] , (18)

B0
d → K+π− We write

A(B0
d → K+π) =

GF√
2

(

λ′
uAu

0 + λ′
cA

c
0 + λ′

tA
t
0

)

, (19)

where

Au
0 = C1 [−CEL − DPL] + C2 [−DEL − CPL]

Ac
0 = −C1DPL(c) − C2CPL(c)

At
0 = −C3 [−CEL − CAL − CPL − 3DPL − DPL(c)]

− C4 [−DEL − DAL − 3CPL − CPL(c) − DPL]

− C5 [−CER − CAR − CPR − 3DPR − DPR(c)]

+ 2C6 [−DES − DAS − 3CPS − CPS(c) − DPS ] (20)

− 1

2
C7 [−2CER + CAR + CPR − 2DPR(c)]

− C8 [2DES − DAS + 2CPS(c) − DPS ]

− 1

2
C9 [−2CEL + CAL + CPL − 2DPL(c)]

− 1

2
C10 [−2DEL + DAL − 2CPL(c) + DPL] .

By neglecting all penguin-operator contributions and Cabibbo suppressed terms we get

A(B0
d → K+π−) =

GF√
2
λ′

cA
c
0 = −GF√

2
λ′

c [C1DPL(c) + C2CPL(c)] , (21)

In A(B+ → π+K0) and A(B0
d → K+π−), if charming-penguin diagrams are very small

then both Cabibbo suppressed contributions and terms due to penguin operators must
be included in the calculation since they are of the same size.

4 Estimates of the diagrams

In this section, we discuss the criteria adopted to evaluate the diagrams appearing
in eqs. (8)-(11) and in sec. 3. Notice that the value of the diagrams is given only
once that the renormalization prescription (RP) and renormalization scale µ of the
operators have been fixed. Under a change of RP or µ the values of the diagrams must
be changed in such a way as to compensate the corresponding changes of the Wilson
coefficients Ci, thus giving the same physical predictions up to and including next-to-
leading logarithmic corrections [17]–[22] 3. The state of the art in the calculation of the

3 Notice that under a change of the RP or of µ, contributions attributed to matrix elements of some
operators can go into the Wilson coefficients or the matrix elements of others, and viceversa.
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matrix elements of the operators is such that, given the complexity of the expressions
in eqs. (8)–(11), this turns out to be impossible. For example, factorized amplitudes
are RP and scale independent, being expressed in terms of physical quantities. Thus
they cannot compensate a variation of the coefficient functions. On the other hand,
the possibility that lattice calculations be able to compute (8)–(11) with sufficient
accuracy appears to be rather remote. This is particularly true for A00 where delicate
cancellations are likely to occur between different contributions, see also the discussion
and the end of this section and section 5. In the following, in order to check the
stability of the results, at fixed values of the diagrams we vary the Wilson coefficients
by changing RP and by taking 2 GeV ≤ µ ≤ 10 GeV.

We now discuss the assumptions made in the evaluations of the different diagrams:

1) DPA and CPA These are Zweig suppressed diagrams which we assume to give
a negligible contribution.

2) Electro-penguins In order to monitor the effects of the electro-penguins, we only
consider the contributions coming from the operators Q9 and Q10 since these
operators have coefficients much larger than Q7 and Q8.

3) DEL and CEL In most of the theoretical analyses, these diagrams give the largest
contribution to the B0

d → ππ amplitudes. If only emissions are present, there
are three independent quantities namely |DEL|, |CEL| and arg(DEL × CE⋆

L).
Without loss of generality we can then write CEL = ξDELeiδξ . We vary 0.0 ≤
ξ ≤ 0.5: this range covers the value preferred by the analysis of D-meson two-
body non-leptonic decays, which suggests ξ ∼ 0, and the value derived from a2/a1

extracted from B → Dπ and B → Dρ decays [3, 23]. Moreover it includes the
canonical value ξ = 1/Nc where Nc is the number of colours. On the basis of
some estimates of FSI [24, 25], we do not expect the relative phase δξ to be larger
than ∼ 0.5, at the energy scales flowing into the pion system in B-decays. We
enlarged the range of δξ up to ∼ 1 in order to check which kind of effect could be
produced by a large phase.

4) DAL and CAL These are diagrams usually neglected since arguments can be
made that, in the factorization hypothesis, they are suppressed by a factor fB/MB

(besides colour suppression in CAL) [15]. fB/MB is related to the B-meson wave
function in the origin. A further suppression factor comes from the matrix element
of the divergence of the vector current which creates the pion pair. In ref. [26],
however, a fit to two-body D-meson decays, resulted in a non negligible value
for the annihilation diagrams, corresponding to DAL/DEL ∼ 0.3(ms − md)/fπ.
It is not clear how these results should be scaled to the B-meson case and for
degenerate quark masses.

Rescattering effects, which have been shown to persist even for large quark masses
[24], can also enhance the value of annihilation diagrams with respect to factor-
ization estimates [27], see also [28]. As discussed in ref. [27], emission and anni-
hilation diagrams are connected via FSI. For example, the CA-diagram can be
seen as a DE followed by rescattering of the final states. In the 1/Nc expansion,
since the scattering amplitude is of order 1/Nc, this gives immediately the cor-

rect leading dependence on the number of colours for CAL. In fact DEL ∼ N
1/2
c ,

CAL ∼ N
−1/2
c and CAL ∼ ηADEL, where ηA is proportional to the scattering
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amplitude, which is of O(1/Nc). The only potentially large contribution from an-
nihilation diagrams comes indeed from the term ∝ C2 CAL in eq. (26), since all
the other annihilation contributions (either DAL or CAL) have (much) smaller
coefficients. Moreover, several arguments can be made to show that the value of
DAL is expected to be at most of the size of CAL and its largest contribution
multiplies C1 which is about 1/5 of C2. In our numerical analysis, we have ex-
plicitly checked, by varying DAL between zero and CAL, that its effect is rather
marginal. For this reason, in sec. 5 we only discuss the case with DAL = 0. To
take into account rescattering effects, we parametrize CAL as CAL = iDELηA.
ηA is a complex “inelasticity” coefficient, the absolute value of which has been es-
timated to be of the order of some tenth [24, 25]. In our numerical study we take it
real with 0 ≤ ηA ≤ 0.5 4. The same rescattering mechanism relates disconnected
and connected diagrams in the penguin case, which is discussed below.

5) GIM-penguins Penguin-like contractions appear both in Au
0 and At

0. Here follow-
ing we discuss the two cases separately. In Au

0 we always find the combinations
DPL − DPL(c) and CPL − CPL(c) and one could argue that, because of the
large final state energy at disposal, GIM cancellation makes these contributions
negligible. The GIM mechanism, however, is expected to be effective only at
short distances, i.e. when a high momentum flows in the penguin loop. For low
momenta, i.e. if we look to long-distance effects, these diagrams can also be
interpreted as emission diagrams followed by rescattering. For example,

CPL − CPL(c) ∼ DEL(B0
d → ππ)S0(ππ → ππ)

−DEL(B0
d → D D)S0(D D → ππ)

∼ fπqµ〈π(~pB − ~q)|Jub
µ |B0

d〉S0(ππ → ππ)

−fDqµ〈D(~pB − ~q)|Jcb
µ |B0

d〉S0(D D → ππ) , (22)

where S0 is the strong interaction S-matrix and Jub,cb
µ are the weak vector cur-

rents. Since fD/fπ ∼ 1.5 [29] and the form factors relative to 〈π(~pB − ~q)|Jbu
µ |B0

d〉
are expected to be smaller than those relative to 〈D(~pB − ~q)|Jbc

µ |B0
d〉 [6]–[8],

by about a factor of 2, F cb(M2
D) ∼ 2F ub(M2

π), it is not clear how effective is
the GIM cancellation between the two contributions. A large cancellation be-
tween the charm and up contributions may still take place if the relative factor
S0(D D → ππ)/S0(ππ → ππ) compensates the differences due to phase space,
decay constants and form factors 5.

The discussion of rescattering effects for GIM-penguins strictly follows that of
the annihilation diagrams made in 4). For this reason, given our ignorance of S0,
we use the parametrization CPL − CPL(c) = iDELηP , with 0 ≤ ηP ≤ 0.5, and
ignore the contribution from DPL − DPL(c).

6) Other penguin diagrams In At
0, penguin contributions are not GIM suppressed.

Thus we expect that rescattering effects play a minor role. Penguin contributions
are of two kinds: either they correspond to the insertion of left-left operators, Q1,

4 All estimates give Re ηA ≫ Im ηA [24, 25].
5 In this respect a combined measurement of the B → ππ and B → D D branching ratios would be very

interesting.
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Q2, Q3, Q4, Q9 and Q10, or they are given by the insertion of Q5 and Q6, for
example in DPR or DPS .

In the previous section, we have noticed that penguin contractions of the operators
Q1 and Q2 can give large effects since the corresponding coefficients are of O(1).
In our numerical analysis we find that a modest relative phase between DPL and
CPL can have dramatic effects. For this reason we introduce two parameters ηL

and δL, by writing DPL = |DEL|ηL and CPL = eiδL |CEL|ηL, with 0.0 ≤ ηL ≤ 1.2
and 0 ≤ δL ≤ 0.5. The range of values of ηL is dictated from the fact that there
is no reason to expect very large/small values for these matrix elements, so we
take them of the same order than the corresponding emission diagrams. As for
the phase, we limit the maximum of δL to 0.5, as we did for δξ. For simplicity, we
take ηL flavour independent, i.e. we use the same value of ηL for DPL, DPL(s)
and DPL(c). We do not connect CPL to DEL, as we did for GIM-penguins,
because, as said above, we do not have to advocate long-distance effects coming
from emissions followed by rescattering. In general, we should consider a complex
value of ηL. We checked, however, that the largest effects come from the relative
phase between DPL and CPL and for this reason, only the case with ηL real will
be discussed in the following.

Left-right penguin contributions only appear together with all the other contrac-
tions of Q5 and Q6. The latter have the same topology of the diagrams considered
so far, but different chiral structures. Rather than introducing another set of free
parameters for the (V −A)×(V +A) and (S+P )×(S−P ) diagrams, we consider
globally the matrix elements of the operators Q5 and Q6 and write

〈ππ|Q5|B0
d〉 = η5CEL , 〈ππ|Q6|B0

d〉 = η6DEL . (23)

In kaon decays, there is a common prejudice that the operators Q5 and Q6 trig-
ger the octet enhancement 6. If really the explanation of the enhancement relies
on the matrix elements of these operators (as also suggested by lattice calcula-
tions [30]), then η5,6 can be as large as 5. Since the kinematical configuration
is so different in B-decays, due to the large mass of the b-quark, and many of
the arguments for the enhancement are based on the chiral expansion, we do not
really expect η5,6 to be as large as in the kaon case. Since we cannot exclude,
however, values of O(1), we vary 0.0 ≤ η5,6 ≤ 2.0.

We summarize the discussion above, by giving the expressions (8)–(11) in units of
DEL, and in terms of the parameters ξ, δξ, δL and of the ηis

Au
2 = −1

3
(C1 + C2)

(

1 + ξeiδξ

)

(24)

At
2 = −1

2
(C9 + C10)

(

1 + ξeiδξ

)

, (25)

Au
0 = C1

[

−1

3
+

2

3
ξeiδξ

]

6 In the kaon case, if µ is larger than the charm mass, which plays the role of the top quark mass for GIM
effects, the operators Q5 and Q6 are hidden in the matrix elements of Qu

1 −Q1 and Qu
2 −Q2 (with b → s in

the operators of the effective Hamiltonian) .
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+ C2

[

2

3
− 1

3
ξeiδξ + i(ηA + ηP )

]

(26)

At
0 =

[

C1 + C2ξe
iδL

]

ηL +

+ C3

[

ξeiδξ + iηA +
(

4 + ξeiδL

)

ηL

]

+ C4

[

1 + 2iηA + (1 + 4ξeiδL)ηL

]

+ C5ξe
iδξη5 + C6η6

+
1

2
C9

[

−1 + ξeiδξ − iηA +
(

2 − ξeiδL

)

ηL

]

− 1

2
C10

[

−1 + ξeiδξ − iηA +
(

1 − 2ξeiδL

)

ηL

]

. (27)

Before discussing the numerical results of our analysis, we want to add some ob-
servations about colour-suppressed processes. The starting point are eqs. (8)–(11)
[(24)–(27)], which contain the expressions of the relevant amplitudes. For the sake of
illustration, let us consider first the case where only DEL and CEL are non vanishing
and we neglect penguin operator contributions. In this case, when we insert (8)–(11)
in eqs. (5) and (6) the following combinations occur

A+− ∝ C1CEL + C2DEL = C2DEL

(

1 +
C1

C2
ξeiδξ

)

(28)

A00 ∝ C1DEL + C2CEL = C1DEL

(

1 +
C2

C1
ξeiδξ

)

. (29)

Numerically, the ratio −C1/C2 ∼ 0.2–0.3 is approximatively equal in size and opposite
in sign to the expected value of ξ. This implies that the second term in eq. (28) is a
small correction (of the order of 10%) to the first one while the two terms in eq. (29)
tend to cancel (for small values of the phase δξ). This, together with the smallness of
C1, is at the origin of colour suppression. In D-decays, where a very small value of ξ
is preferred, colour suppression is expected to be less effective 7.

As can be read from eqs. (8)–(11), a similar colour-suppression pattern is present
in all the ∆I = 1/2 annihilation and penguin diagrams generated by the operators
Q1–Q2, which are the operators with the largest coefficients:

A00 ∝ C1 [DAL + (DPL − DPL(c)) + τDPL(c)]

+ C2 [CAL + (CPL − CPL(c)) + τCPL(c)] + . . . (30)

Thus, if all the connected diagrams are about a factor of ξ smaller than the correspond-
ing disconnected ones, it is very difficult to resurrect the B0

d → π0π0 amplitude, unless
the matrix elements of the penguin operators Q3–Q10 are very large. The same argu-
ments, however, could be applied to kaon decays, with the surprising conclusion that
|A0| ∼ 2|A2| in sharp disagreement with the experimental observation |A0| ≫ |A2|. It
is then clear that dynamical effects play a fundamental role in this game.

Of course, it is possible to argue that the dynamics of the decay for kaons and
B-mesons is completely different and that factorization is a very bad approximation
for light mesons. It is clear, however, that one cannot exclude some residual dynamical

7 This could alternatively mean that factorization is a poor approximation.
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effect which enhances the B0
d → π0π0 amplitude over its factorized value. The contri-

bution of Q1 and Q2 to At
0, non-zero phases δξ and δL or the connected-disconnected

diagram-exchange mechanism for CAL and CPL−CPL(c) discussed above may provide
such effects.

5 Numerical results

In this section, we present numerical results for the quantities sin 2α and R, that only
depend on ratios of amplitudes. The latter are all proportional, via the parameters ξ,
. . ., η6, to DEL, the value of which cancels out in the ratios.

One could, however, also be interested to know the variation of BR(B0
d → π+π−) for

different assumptions about GIM-penguin, charming-penguin, annihilation diagrams
etc. Thus we also give below R+− = BR(B0

d → π+π−)/BR(B0
d → π+π−)|DEL

, where
BR(B0

d → π+π−) is the branching ratio computed for a given set of the parameters
ξ, . . ., η6, whilst BR(B0

d → π+π−)|DEL
is the branching ratio with all the diagrams

put to zero, but DEL. In this way, the reader can use his preferred model to compute
DEL and predict the physical value of BR(B0

d → π+π−). In the following, R will also
denote BR(B0

d → π0π0)/BR(B0
d → π+π−)|DEL

.
For the determination of α and the relative error, we define

sin 2αeff =
Imλ

|λ| , (31)

which is the quantity that can be extracted from the time-dependent asymmetry by
measuring the coefficients of cos(∆Mdt) and of sin(∆Mdt) in eq. (1). The uncertainty
on the “true” value of sin 2α can be estimated by constructing

∆ = sin 2αeff − sin 2α . (32)

Finally we present our results for the ratios R1 = BR(B0
d → K0K̄0)/BR(B0

d →
π+π−)|DEL

, R2 = BR(B+ → π+K0)/BR(B0
d → π+π−)|DEL

and R3 = BR(B0
d →

K+π−)/BR(B0
d → π+π−)|DEL

, the values of which have a strong dependence on the
contribution of charming-penguin diagrams.

In subsec. 5.1 the results for R and R+− under different assumptions on the operator
matrix elements are presented; in subsec. 5.2 the effects of these assumptions on the
determination of sin 2α are analyzed, while subsec. 5.3 contains the numerical results
for R1, R2 and R3.

5.1 Estimates of R and R+−

Given the large number of parameters, in order to understand which diagrams give
important/unimportant contributions, for several values of ξ and δξ we vary one single
of the ηis (and δL) of the set defined in sec. 4 at the time, while keeping all the others
fixed to zero. We have also checked that the main features of the results discussed
below are the same irrespectively of the choice of the RP and of the renormalization
scale µ (2 GeV ≤ µ ≤ 10 GeV).
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C1/C2

µ (GeV) LO NDR HV RI-Landau Gauge

2.0 -0.31 -0.27 -0.32 -0.24
5.0 -0.19 -0.16 -0.19 -0.15
10.0 -0.12 -0.09 -0.12 -0.08

ξ

µ (GeV) LO NDR HV RI-Landau Gauge

2.0 0.52(7) 0.49(8) 0.53(7) 0.46(8)
5.0 0.42(8) 0.39(9) 0.42(9) 0.39(9)
10.0 0.36(9) 0.33(9) 0.36(9) 0.32(9)

Table 1: Values of C1/C2 and ξ for different RP and at different values of the renormalization
scale µ. The values of ξ have been computed assuming a2/a1 = 0.25 ± 0.05, from B → Dπ,
Dρ, D∗π and D∗ρ decays, and using ξ = (a2/a1 − C1/C2)/(1 − a2/a1 × C1/C2).

a) Colour suppression for DEL and CEL Colour suppression depends on the value
of the Wilson coefficients, ξ and the phase δξ. Information on the value of ξ is
usually obtained by analyzing several B-decay channels (B → Dπ, Dρ, D∗π and
D∗ρ [23]) and is correlated to the Wilson coefficients used in the analysis. In
most of the cases, the leading order (LO) coefficients at µ = mb are used and
a value of ξ ∼ 0.4 is found. From a comparison of the LO results, with those
obtained at the next-to-leading order (NLO) in different renormalization schemes
(NDR, HV and RI [22]), we find that the value of ξ is not very sensitive to the
(considered) RP, whereas it can vary from 0.23, at µ = 10 GeV, to 0.60, at µ = 2
GeV 8. The correlation between the ratio C1/C2 and the extracted value of ξ is
shown in table 1. We have taken a2/a1 = 0.25 ± 0.05, in agreement with most
of the analyses of the experimental data [23]. In absence of a fully consistent
treatment of the amplitudes at the NLO, which could be obtained if some lattice
calculation existed [22], we have no reason to prefer a particular value of the scale,
or to maintain any correlation between µ and the value of ξ. For this reason, in
the following we take the coefficients computed at the LO for µ = 5 GeV from
ref. [22] but vary ξ in the range 0.2 ≤ ξ ≤ 0.5, which covers almost all the values
in table 1.

We have a comment on the choice of the Wilson coefficients made in some recent
studies which may be useful to the reader. In refs. [5, 31] and [32] they used
the renormalization scheme independent coefficients introduced in ref. [19], and
computed for the full basis (3) in ref. [31]. Though perfectly legitimate, this
choice corresponds to a value of the ratio C1/C2 = −0.27 (and to ξ ∼ 0.47),
sensibly larger than those found at leading order or at the NLO in the NDR, HV
or RI schemes at a renormalization scale µ ∼ mb, see for example ref. [22] 9.

On the basis of the discussion of the previous section, see eq. (29), for δξ = 0,

8 This determination of ξ is only indicative, since it is not known whether the same value of ξ should be
used for B → Dπ and B → ππ decays.

9 Indeed the renormalization scheme of ref. [19] has never been completely specified, because the external
states on which the renormalization conditions were imposed were not given explicitly in the paper.
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Figure 3: The ratio R is given as a function of ξ at three values of δξ. In the amplitudes,
only contributions of emission diagrams are included.

the ratio R has a minimum for ξ ∼ −C1/C2 ∼ 0.2 and rises for larger values of
ξ. The suppression is softened for non-vanishing values of δξ, as can be seen in
fig. 3, and a value of R = 0.03–0.06 is obtained for ξ ∼ 0.4–0.5 and δξ = 0.5 (to
be compared to R = 0.02 at ξ = 0). Notice that R+− only varies by less than 20
% in the range of ξ and δξ considered here (it would only vary by about 10 %, as
a function of δξ , at ξ = 0.4 fixed).

b) Annihilation and GIM-penguin diagrams The effect of annihilation diagrams de-
pends on δξ and ξ. Let us first fix ξ = 0.4 and vary δξ. For small values of δξ, up to
δξ ∼ 0.4, R increases with ηA and reaches a value of ∼ 0.1 at ηA = 0.5; for larger
values of δξ, instead, there is destructive interference which balances the positive
effect of δξ on colour suppression. The situation is illustrated in fig. 4. Contrary
to R which is subject to appreciable variations, with the same parameters R+−

changes by less 20 % even at the largest value of ηA. Similar behaviours, but on
different ranges of δξ are observed at other values of ξ.

The effect of GIM-penguin diagrams is essentially the same as for annihilation
diagrams, since, as can be immediately seen from eq. (26), the largest Wilson
coefficient C2 multiplies the combination ηA + ηP .
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Figure 4: The ratio R is given as a function of ηA at three values of δξ. In the amplitudes,
only contributions of annihilation and emission diagrams are included.

c) Q5 and Q6 and Electro-penguins Q5 and Q6 give relatively small corrections both
to R and R+−, because their coefficients are very small. Of the two terms, the
contribution of Q5, which has the smaller coefficient and is colour suppressed,
is always very small. Q6 has the effect of changing by about ∼ 80% and ∼ 5%
the ratios R and R+− respectively when η6 = 2. A large effect from Q6 can
only be obtained at extremely large values of its matrix element. In comparison,
electro-penguin diagrams always give tiny corrections.

d) Charming penguins The most important of all the effects is given by charming
penguins. The explanation was already given in the previous section: these dia-
grams correspond to the insertion of the operators Q1 and Q2 which have large
Wilson coefficients and the contribution of which is also augmented by the fac-
tor τ . They may easily enhance the B0

d → π0π0 amplitude, and change also
appreciably the B0

d → π+π− rate.

In figs. 5 and 6, we give R and R+− as a function of ηL at three value of δL

(for ξ = 0.4 and δξ = 0). We observe that, for ηL ∼ 1.0, there is a quite
substantial effect when δL is different from zero: R can reach values as large
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Figure 5: The ratio R is given as a function of ηL at for δL = 0, 0.25 and 0.50, at ξ = 0.4 and
δξ = 0. In the amplitudes, only contributions of emission diagrams and charming penguins
are included.

as 0.25 (for δL = 0.25) and even 0.35 for δL = 0.5 10. Even with δL = 0 we
find a large enhancement, which can lead to R = 0.10–0.15 at relatively modest
values of ηL. In this case there is even an increase of about 20% of R+−. This
discussion shows that values of BR(B0

d → π0π0) as large as 1–3×10−6 (assuming
BR(B0

d → π+π−) = 1–2 × 10−5) are indeed easily possible.

5.2 Determination of sin 2α

In this subsection, we discuss the uncertainties in the determination of sin 2α. These
uncertainties are parametrized in terms of the shift ∆ introduced before. ∆ is computed
at different values of sin 2α which are obtained by varying the CKM weak phase δ. The
values of of sin 2α are computed from the expression sin 2α = Im(τ/τ⋆), with τ given
in the last of eqs. (13), and using ρ = σ cos δ and η = σ sin δ with σ = 0.36 and
−0.8 ≤ cos δ ≤ +0.7 (sin δ ≥ 0). In the figures below, we give ∆ as a function of

10 The effect is striking for the B0
d
→ π+π− rate which at ηL = 1.2 and δL ∼ 1.0 almost vanishes. We

believe, however, that this is a quite remote possibility.
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Figure 6: The ratio R+− is given as a function of ηL for δL = 0, 0.25 and 0.50, at ξ = 0.4 and
δξ = 0. In the amplitudes, only contributions of emission diagrams and charming penguins
are included.

sin 2αeff because the latter is the quantity which is measured experimentally. The
strange behaviour of ∆ for sin 2αeff ∼> 0.80 comes from the fact that two different
values of cos δ, for cos δ ∼< − 0.6, correspond to the same value of sin 2α. Had we
varied cos δ within the range allowed by the combined analysis of the K0–K̄0 and of
the B0

d–B̄0
d mixing amplitudes [33], i.e. −0.3 ≤ cos δ ≤ 0.9, the two-fold ambiguity

would have disappeared, because the interval in cos δ limits, in this case, sin 2α to
values smaller than about 0.9.

In the following, we discuss together the cases a)–c) of subsec. 5.1 and the case d)
separately.

a)–c) In fig. 7 we show a band of possible values for ∆. This band has been obtained
in the following way: a) by varying ξ between 0.0 and 0.5 with δξ = 0, 0.5 and
1.0, and all the other ηi’s taken to be zero; b) by fixing ξ = 0.4 and varying
ηA between 0.0 and 0.5 with δξ = 0, 0.5 and 1.0 (ηP = η5 = η6 = ηL = 0); c)
by taking ξ = 0.4, δξ = 0 and 0.0 ≤ η6 ≤ 2.0 (ηA = ηP = η5 = ηL = 0). We
see that for all the cases a)-c) the size of ∆ is about −(0.05–0.15) in almost the
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Figure 7: A band of possible values for ∆ as a function of sin 2α is given. This band
corresponds to different choices of the parameters introduced in 1)–5), see sec. 4.

whole interval of values of sin 2α 11. This happens because the terms depending
on ξ, δξ , ηA and η5,6 give small variations (of the order of 20% at most) to the
B0

d → π+π− amplitude. These results are similar to those found in refs. [5, 32]
where different hypotheses or approximations where used.

d) We varied ηL and δL as at the point d) of subsection 5.1, while taking ξ = 0.4
and δξ and all the other ηis to be zero. In this case the uncertainty on sin 2α
can be very large, corresponding to ∆ ∼ 0.4–0.8, see fig. 8. The reason, as
already discussed above, is that charming penguins give large corrections to the
B0

d → π+π− amplitude too, while in the other cases considered above [a)–c)], the
corrections are large only for the B0

d → π0π0 amplitude where large cancellations
occur.

In order to guide the reader, we end this subsection by giving in table 2 a set of
numerical results for sin 2αeff and ∆ obtained for different choices of the parameters
introduced in a)–d) (also reported in the table). In the set of examples given in table 2,
∆ ∼< 0.6.

11 Smaller values are only found when sin 2α is close to +1 or −1.
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Figure 8: A family of curves for ∆ is given as a function of sin 2α. They correspond to
different choices of the parameters ηL (ηL = 0, 0.5, 1.2) and δL (δL = 0, 0.25, 0.5) introduced
in d), see sec. 4.

5.3 Charming-penguin dominated branching ratios

Our main results for the ratios of rates introduced before are summarized in table
3, where a large set of possibilities has been considered. We have introduced a label
“No.” to distinguish the different cases which will be discussed below 12. The table is
instructive because it shows the strong correlation between R and R1,2,3, particularly
when charming-penguin contributions are large. We will make use of this correlation,
combined to the experimental information BR(B0

d → K+π−) = (1.5+0.5
−0.4 ± 0.2) ×

10−5 and BR(B0
d → π+π−) < 1.5 × 10−5 [9], and to prejudices based on theoretical

estimates of the matrix elements, in order to reduce the uncertainties. Given the
present precision in the measurement of BR(B0

d → K+π−), and our ignorance on
the matrix elements, the discussion below is, at the moment, preliminary and semi-
quantitative and only intended to illustrate a method which may become very useful
when the experimental precision will increase and theoretical predictions for GIM- and
charming-penguin diagrams will become available.

12 In order to check the stability of the results, other cases have been analyzed but not given in table 3.
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No. sin 2αeff ∆ sin 2αeff ∆

cos δ = −0.8, sin 2α = 0.81 cos δ = 0, sin 2α = 0.64

2 0.86 0.047 0.53 −0.11
7 0.68 −0.13 0.88 0.24
8 0.68 −0.13 0.88 0.23
9 0.68 −0.14 0.85 0.21
14 0.73 −0.087 0.8 0.16
15 0.62 −0.2 0.96 0.31
18 0.72 −0.09 0.82 0.17
23 0.61 −0.2 0.96 0.32
27 0.65 −0.17 0.92 0.28

cos δ = 0.38, sin 2α = −0.04 cos δ = 0.7, sin 2α = −0.77

2 −0.16 −0.12 −0.83 −0.056
7 0.34 0.38 −0.53 0.24
8 0.32 0.35 −0.56 0.21
9 0.24 0.27 −0.64 0.13
14 0.17 0.21 −0.67 0.11
15 0.53 0.57 −0.36 0.42
18 0.21 0.25 −0.63 0.14
23 0.52 0.56 −0.38 0.39
27 0.43 0.47 −0.47 0.3

Table 2: We give results for sin 2αeff and ∆ obtained with different choices of the parameters
δξ, . . ., ηis. In all cases ξ = 0.4. In the table, the value of cos δ used in the different examples,
and the corresponding value of sin α, are also shown. The label “No.”, which is the same of
table 3, allows a study of the correlation between ∆ and the values of the branching ratios
discussed in subsec. 5.3.

We proceed as follows:

i) BR(B0
d → π+π−) Different theoretical estimates of this branching ratio, obtained

by using the factorization hypothesis but with different models to evaluate the ma-
trix elements, are consistent within a factor of two and give BR(B0

d → π+π−) =
1–2× 10−5 [3]–[5]. The spread of these predictions is mostly due to differences in
the values of the form factors of the weak-currents and in the value of ξ used for the
calculation of the emission diagrams. The results, instead, are only marginally
affected by the contribution of the penguin operators Q3–Q10, which in some
cases have been omitted (charming-penguin diagrams have never been consid-
ered). This happens for the following reason: in the factorized case the matrix
elements of Q5 and Q6, which are expected to give the largest contributions of
all penguin operators, correspond to η5,6 ∼ 1 for which the correction is of a
few percent, as can been seen by comparing No. 2 to No. 5 in table 3. This
explains the relative stability of the theoretical results. We then assume that
1–2 × 10−5 is a range representative of the theoretical uncertainty for emission
diagrams 13. On the basis of the above discussion, in the following we consider

13 Predictions on BR(B0
d
→ π0π0) are, instead, very unstable because in this case even a small error on
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three possibilities BR(B0
d → π+π−)|DE+CE = (0.5, 1.0, 1.5) × 10−5. The lat-

ter two cases have been used because they are in the ballpark of all estimates,
the first value because it accounts for large deviations from the factorization
predictions. Values of BR(B0

d → π+π−)|DE+CE larger than 2 × 10−5 are ex-
cluded on the basis of ii) below. BR(B0

d → π+π−)|DE+CE corresponds to the
case No. 2 of table 3, where R+− = 0.85. Thus, for example, if we assume
BR(B0

d → π+π−)|DE+CE = 1.5 × 10−5, the ratio R = 0.54 (No. 18) gives
BR(B0

d → π0π0) = 0.54/0.85 × 1.5 × 10−5 = 0.95 × 10−5.

ii) BR(B0
d → K+π−) vs BR(B0

d → π+π−) From CLEO we expect BR(B0
d → K+π−)

to be larger than BR(B0
d → π+π−). Thus we exclude all those cases where

BR(B0
d → K+π−) ≤ BR(B0

d → π+π−), namely No. 1–6, 13, 17, 18, 21, 22, 25,
26.

iii) BR(B0
d → K+π−) We also exclude all cases where BR(B0

d → K+π−) ≤ 1× 10−5

or BR(B0
d → K+π−) ≥ 2 × 10−5.

Indeed, from the experimental results, BR(B0
d → K+π−) ∼ 2.5 × 10−5 or BR(B0

d →
K+π−) ∼ 0.5 × 10−5 and also BR(B0

d → K+π−) ∼ BR(B0
d → π+π−) are still open

possibilities. However, we want to stretch here the experimental constraints in order
to show how this analysis works.

We now discuss the results of table 4, where the main results of the selection
based on i)–iii) are given. For comparison, in this table we also give the results for
No. 2, where only emission diagrams contribute. We first notice that the charming-
penguin enhancement of BR(B+ → π+K0) and BR(B0

d → K+π−) is always very
large, corresponding to a factor of 10–40, with respect to standard case No. 2. A
stable prediction of the results in the table is that we also expect BR(B+ → π+K0)
to be comparable to BR(B0

d → K+π−) and of the order 1 × 10−5. Although, on the
basis of table 3, a much large enhancement of BR(B0

d → π0π0) would be possible,
the constraints i)–iii) limit the effect of charming penguins so that the final result is
about a factor of 2 larger than previous estimates [3, 4]. A larger enhancement is still
possible, however, if we relax the selection constraints. For example, without ii), case
No. 18 is acceptable and, for BR(B0

d → π+π−)|DE+CE = 0.5 × 10−5, it gives

BR(B0
d → π+π−) = 1.2 × 10−5 , BR(B0

d → π0π0) = 0.3 × 10−5 ,

BR(B0
d → K0K̄0) = 0.3 × 10−5 , BR(B+ → π+K0) = 0.6 × 10−5 ,

BR(B0
d → K+π−) = 0.8 × 10−5 . (33)

These results give a large BR(B0
d → π0π0), and are still compatible with the experi-

mental measurement of BR(B0
d → K+π−) and the present limit on BR(B0

d → π+π−).
This example also show the importance of the reduction of the experimental error for
determining charming-penguin effects.

We finally notice that for BR(B0
d → K0K̄0), besides charming penguins, GIM-

penguins are also relatively important. Moreover GIM- and charming-penguin dia-
grams appear in the r.h.s. of eq. (15) in the same combination as in At

0, eq. (27). A

the evaluation of a single diagram is amplified by the large cancellations of the different contributions. This
is also shown by comparing different entries in the table, where variations of R over one order of magnitude
are observed.
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measurement of BR(B0
d → K0K̄0) is then very important for the determination of the

combined value of GIM and charming-penguin diagrams in B0
d → ππ decays and may

lead to a reduction of the uncertainties in the determination of sin 2α. Unfortunately,
in most of the cases, this branching ratio remains rather small, BR(B0

d → K0K̄0) ∼
5 × 10−7, in spite of the enhancement due to charming penguins. For this reason this
may be a difficult measurement even for B-factories. However, from the example dis-
cussed in (33) and the results of the table, a BR(B0

d → K0K̄0) = 2–3 × 10−6 is still
compatible with the present experimental constraints and the experimental search of
this decay mode is very important.

6 Conclusions

In this paper we have discussed several effects which could enhance the B0
d → π0π0

branching ratio. Among these, we have shown the presence of diagrams involving
operators containing charmed quarks, denoted as “charming penguins”, which were
never studied before. Since there is no reason a priori to expect the value of these
diagrams to be small, and the corresponding Wilson coefficients are of O(1), and not
of O(αs/12π ln(m2

t /µ
2)), they may have a large effect in the B0

d → π0π0 decay rate
and in the determination of the weak phase α extracted from the measurement of the
B0

d → π+π− time-dependent asymmetry. In absence of any realistic estimate of the
value of charming-penguin diagrams, we allow them to vary within reasonable ranges
of values and show that, without further constraints, they can lead to a BR(B0

d →
π0π0) ∼ 1–3× 10−6. Correspondingly, the uncertainty in determination of sin 2α from
the time-dependent asymmetry could be as large as 0.4–0.8.

We have also shown that GIM- and charming-penguin diagrams dominate the
B0

d → K0K̄0 amplitude because emission and annihilation diagrams are only produced
by the insertion of the operators Q3–Q10 which have rather small Wilson coefficients.
GIM- and charming-penguin diagrams appear in the B0

d → K0K̄0 amplitude in the
same combination as in the B0

d → ππ case. Thus, if we assume SU(3) symmetry, a
measurement of BR(B0

d → K0K̄0) contains important information on these contri-
butions and may help to reduce the uncertainty in the extraction of sin 2α from the
B0

d → π+π− time-dependent asymmetry.
A striking effect of charming-penguins occurs in B+ → π+K0 and B0

d → K+π−

decays. In this case, the enhancement easily gives values of BR(B+ → π+K0) and
BR(B0

d → K+π−) of about 1 × 10−5, 10–40 times larger than those obtained by
considering emission diagrams only. This is because in the latter case the main con-
tribution is Cabibbo suppressed. Our findings are supported by the recent results of
the CLEO Collaboration [9]. Theoretical predictions of the charming-penguin (and
GIM-penguin) amplitudes, either from the lattice, or with QCD sum rules, or with any
other non-perturbative technique, are then urgently needed.
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No. ξ δξ ηA,P η5,6 ηL δL R R+− R1 R2 R3

1 0 0 0 0 0 0 0.019 1. 0.0044 0.11 0.083
2 0.4 0 0 0 0 0 0.022 0.85 0.0025 0.061 0.076
3 0.4 0.5 0 0 0 0 0.036 0.87 0.0028 0.067 0.075
4 0.4 0 0.25 0 0 0 0.13 1.1 0.04 0.083 0.13
5 0.4 0 0 1 0 0 0.025 0.87 0.013 0.31 0.3
6 0.4 0 0 2 0 0 0.032 0.89 0.031 0.75 0.71
7 0.4 0 0 0 0.5 0 0.046 0.87 0.034 0.82 0.94
8 0.4 0 0 0 0.5 0.25 0.074 0.67 0.042 1. 1.3
9 0.4 0 0 0 0.5 0.5 0.11 0.5 0.066 1.6 2.1
10 0.4 0 0 0 1 0 0.13 1. 0.18 4.3 4.5
11 0.4 0 0 0 1 0.25 0.19 0.61 0.21 5. 5.6
12 0.4 0 0 0 1 0.5 0.27 0.3 0.29 7.1 8.1
13 0.4 0.5 0 1 0.5 0 0.016 0.86 0.014 0.34 0.46
14 0.4 0.5 0 1 0.5 0.25 0.043 0.66 0.027 0.65 0.93
15 0.4 0.5 0 2 1 0 0.025 0.9 0.084 2. 2.3
16 0.4 0.5 0 2 1 0.25 0.089 0.52 0.13 3.1 3.7
17 0.4 0.5 0.25 0 0.5 0 0.15 1.3 0.19 0.74 0.89
18 0.4 0.5 0.5 0 0.5 0.25 0.54 2. 0.45 0.98 1.4
19 0.4 0.5 0.25 0 1 0 0.3 1.7 0.45 4. 4.3
20 0.4 0.5 0.5 0 1 0.25 0.82 2.3 0.82 4.8 5.6
21 0.4 0.5 0.25 1 0.5 0 0.12 1.2 0.14 0.3 0.43
22 0.4 0.5 0.5 1 0.5 0.25 0.47 1.8 0.37 0.63 1.1
23 0.4 0.5 0.25 1 1 0 0.25 1.5 0.36 2.9 3.1
24 0.4 0.5 0.5 1 1 0.25 0.74 2.2 0.71 3.8 4.6
25 0.4 0.5 0.25 2 0.5 0 0.09 1.1 0.093 0.061 0.17
26 0.4 0.5 0.5 2 0.5 0.25 0.42 1.7 0.3 0.48 0.9
27 0.4 0.5 0.25 2 1 0 0.21 1.4 0.29 1.9 2.1
28 0.4 0.5 0.5 2 1 0.25 0.67 2. 0.61 3. 3.8

Table 3: We give results for R = BR(B0
d → π0π0)/BR(B0

d → π+π−)|DEL
, R+− =

BR(B0
d → π+π−)/BR(B0

d → π+π−)|DEL
, R1 = BR(B0

d → K0K̄0)/BR(B0
d → π+π−)|DEL

,
R2 = BR(B+ → π+K0)/BR(B0

d → π+π−)|DEL
and R3 = BR(B0

d → K+π−)/BR(B0
d →

π+π−)|DEL
, obtained with different choices of the parameters ξ, . . ., ηis.
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No. B0
d → π+π− B0

d → π0π0 B0
d → K0K̄0 B+ → π+K0 B0

d → K+π−

BR × 105 BR × 105 BR × 105 BR × 105 BR × 105

BR(B0
d → π+π−)DE+CE = 1.5 × 10−5

2 1.5 0.05 0.004 0.11 0.13

7 1.5 0.08 0.06 1.4 1.7
14 1.2 0.08 0.05 1.1 1.6

BR(B0
d → π+π−)DE+CE = 1 × 10−5

2 1 0.03 0.003 0.07 0.09

7 1 0.05 0.04 1 1.1
8 0.8 0.09 0.05 1.2 1.5
14 0.8 0.05 0.03 0.8 1.1

BR(B0
d → π+π−)DE+CE = 0.5 × 10−5

2 0.5 0.01 0.001 0.04 0.04

9 0.3 0.06 0.04 0.9 1.2
15 0.5 0.01 0.05 1.2 1.4
23 0.9 0.1 0.2 1.7 1.8
27 0.8 0.1 0.2 1.1 1.2

Table 4: Branching ratios for B0
d → π+π−, B0

d → π0π0, B0
d → K0K̄0, B+ → π+K0 and

B0
d → K+π−. The cases are labeled as in table 3. The BRs are normalized assuming three

different values of BR(B0
d → π+π−)|DE+CE.
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