4 research outputs found

    Anthropogenic N – A global issue examined at regional scale from soils, to fungi, roots and tree rings

    No full text
    Globally increasing anthropogenic airborne emissions of reactive nitrogen (N) generate several environmental issues that require investigating how N accumulation modifies the N cycle. Tree-ring δ15N series may help understanding past and current perturbations in the forest N cycle. Although several studies have addressed this issue, most of them were of local scale or based on short δ15N series. The development of this environmental indicator however would benefit from examining, at the regional scale, the relationships of long tree-ring series with soil N biogeochemical processes. Here we explore these links for tree stands of the oil-sands region in northern Alberta, and the coal-fired power plants region in central Alberta, Canada. We characterize the tree-ring δ15N trends, the N modification rates and bacterial and fungal communities of soil samples collected in the immediate surrounding of the characterized trees. The dataset suggests that specific soil pH, and N-cycling bacterial and fungal communities influence tree-ring δ15N responses to anthropogenic emissions, correlating either directly or inversely. Overall, tree-ring δ15N series may record changes in the forest-N cycle, but their interpretation requires understanding key soil biogeochemical processes. «In nature nothing exists alone», Rachel Carson

    Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    No full text
    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups
    corecore