4 research outputs found

    Emerging roles of Gemin5: From snRNPs assembly to translation control

    Full text link
    RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The disfunction of RBPs is frequently the cause of cell disorders which are incompatible with life. Furthermore, the ordered assembly of RBPs and RNAs in ribonucleoprotein (RNP) particles determines the function of biological complexes, as illustrated by the survival of the motor neuron (SMN) complex. Defects in the SMN complex assembly causes spinal muscular atrophy (SMA), an infant invalidating disease. This multi-subunit chaperone controls the assembly of small nuclear ribonucleoproteins (snRNPs), which are the critical components of the splicing machinery. However, the functional and structural characterization of individual members of the SMN complex, such as SMN, Gemin3, and Gemin5, have accumulated evidence for the additional roles of these proteins, unveiling their participation in other RNA-mediated events. In particular, Gemin5 is a multidomain protein that comprises tryptophan-aspartic acid (WD) repeat motifs at the N-terminal region, a dimerization domain at the middle region, and a non-canonical RNA-binding domain at the C-terminal end of the protein. Beyond small nuclear RNA (snRNA) recognition, Gemin5 interacts with a selective group of mRNA targets in the cell environment and plays a key role in reprogramming translation depending on the RNA partner and the cellular conditions. Here, we review recent studies on the SMN complex, with emphasis on the individual components regarding their involvement in cellular processes critical for cell survivalBFU2017-84492-R, Comunidad de Madrid (B2017/BMD3770

    Picornavirus translation strategies

    Full text link
    The genome of viruses classified as picornaviruses consists of a single monocistronic positive strand RNA. The coding capacity of these RNA viruses is rather limited, and thus, they rely on the cellular machinery for their viral replication cycle. Upon the entry of the virus into susceptible cells, the viral RNA initially competes with cellular mRNAs for access to the protein synthesis machinery. Not surprisingly, picornaviruses have evolved specialized strategies that successfully allow the expression of viral gene products, which we outline in this review. The main feature of all picornavirus genomes is the presence of a heavily structured RNA element on the 5´UTR, referred to as an internal ribosome entry site (IRES) element, which directs viral protein synthesis as well and, consequently, triggers the subsequent steps required for viral replication. Here, we will summarize recent studies showing that picornavirus IRES elements consist of a modular structure, providing sites of interaction for ribosome subunits, eIFs, and a selective group of RNA-binding proteinsThis work was supported by grants PID2020-115096RB-I00 (MICIN), B2017/BMD-3770 (cofinanced by Autonomous Community of Madrid and FEDER funds), and an Institutional grant from Fundación Ramón Arece

    Functional and structural deficiencies of Gemin5 variants associated with neurological disorders

    Get PDF
    Dysfunction of RNA-binding proteins is often linked to a wide range of human disease, particularly with neurological conditions. Gemin5 is a member of the survival of the motor neurons (SMN) complex, a ribosome-binding protein and a translation reprogramming factor. Recently, pathogenic mutations in Gemin5 have been reported, but the functional consequences of these variants remain elusive. Here, we report functional and structural deficiencies associated with compound heterozygosity variants within the Gemin5 gene found in patients with neurodevelopmental disorders. These clinical variants are located in key domains of Gemin5, the tetratricopeptide repeat (TPR)-like dimerization module and the noncanonical RNA-binding site 1 (RBS1). We show that the TPR-like variants disrupt protein dimerization, whereas the RBS1 variant confers protein instability. All mutants are defective in the interaction with protein networks involved in translation and RNA-driven pathways. Importantly, the TPR-like variants fail to associate with native ribosomes, hampering its involvement in translation control and establishing a functional difference with the wild-type protein. Our study provides insights into the molecular basis of disease associated with malfunction of the Gemin5 protei

    Clinical Presentation and Short- and Long-term Outcomes in Patients With Isolated Distal Deep Vein Thrombosis vs Proximal Deep Vein Thrombosis in the RIETE Registry

    No full text
    International audienceImportance: Insufficient data exist about the clinical presentation, short-term, and long-term outcomes of patients with isolated distal deep vein thrombosis (IDDVT), that is, thrombosis in infrapopliteal veins without proximal extension or pulmonary embolism (PE).Objective: To determine the clinical characteristics, short-term, and 1-year outcomes in patients with IDDVT and to compare the outcomes in unadjusted and multivariable adjusted analyses with patients who had proximal DVT.Design, setting, and participants: This was a multicenter, international cohort study in participating sites of the Registro Informatizado Enfermedad Tromboembólica (RIETE) registry conducted from March 1, 2001, through February 28, 2021. Patients included in this study had IDDVT. Patients with proximal DVT were identified for comparison. Patients were excluded if they had a history of asymptomatic DVT, upper-extremity DVT, coexisting PE, or COVID-19 infection.Main outcomes and measures: Primary outcomes were 90-day and 1-year mortality, 1-year major bleeding, and 1-year venous thromboembolism (VTE) deterioration, which was defined as subsequent development of proximal DVT or PE.Results: A total of 33 897 patients were identified with isolated DVT (without concomitant PE); 5938 (17.5%) had IDDVT (mean [SD] age, 61 [17] years; 2975 male patients [50.1%]), and 27 959 (82.5%) had proximal DVT (mean [SD] age, 65 [18] years; 14 315 male patients [51.2%]). Compared with individuals with proximal DVT, those with IDDVT had a lower comorbidity burden but were more likely to have had recent surgery or to have received hormonal therapy. Patients with IDDVT had lower risk of 90-day mortality compared with those with proximal DVT (odds ratio [OR], 0.47; 95% CI, 0.40-0.55). Findings were similar in 1-year unadjusted analyses (hazard ratio [HR], 0.52; 95% CI, 0.46-0.59) and adjusted analyses (HR, 0.72; 95% CI, 0.64-0.82). Patients with IDDVT had a lower 1-year hazard of VTE deterioration (HR, 0.83; 95% CI, 0.69-0.99). In 1-year adjusted analyses of patients without an adverse event within the first 3 months, IDDVT was associated with lower risk of VTE deterioration (adjusted HR, 0.48; 95% CI, 0.24-0.97). By 1-year follow-up, symptoms or signs of postthrombotic syndrome were less common in patients with IDDVT (47.6% vs 60.5%).Conclusions and relevance: Results of this cohort study suggest that patients with IDDVT had a less ominous prognosis compared with patients with proximal DVT. Such differences were likely multifactorial, including the differences in demographics, risk factors, comorbidities, particularly for all-cause mortality, and a potential association of thrombus location with VTE deterioration and postthrombotic syndrome. Randomized clinical trials are needed to assess the optimal long-term management of IDDVT
    corecore