10,747 research outputs found

    Experimental evidence of shock mitigation in a Hertzian tapered chain

    Full text link
    We present an experimental study of the mechanical impulse propagation through a horizontal alignment of elastic spheres of progressively decreasing diameter ϕn\phi_n, namely a tapered chain. Experimentally, the diameters of spheres which interact via the Hertz potential are selected to keep as close as possible to an exponential decrease, ϕn+1=(1−q)ϕn\phi_{n+1}=(1-q)\phi_n, where the experimental tapering factor is either q1≃5.60q_1\simeq5.60~% or q2≃8.27q_2\simeq8.27~%. In agreement with recent numerical results, an impulse initiated in a monodisperse chain (a chain of identical beads) propagates without shape changes, and progressively transfer its energy and momentum to a propagating tail when it further travels in a tapered chain. As a result, the front pulse of this wave decreases in amplitude and accelerates. Both effects are satisfactorily described by the hard spheres approximation, and basically, the shock mitigation is due to partial transmissions, from one bead to the next, of momentum and energy of the front pulse. In addition when small dissipation is included, a better agreement with experiments is found. A close analysis of the loading part of the experimental pulses demonstrates that the front wave adopts itself a self similar solution as it propagates in the tapered chain. Finally, our results corroborate the capability of these chains to thermalize propagating impulses and thereby act as shock absorbing devices.Comment: ReVTeX, 7 pages with 6 eps, accepted for Phys. Rev. E (Related papers on http://www.supmeca.fr/perso/jobs/

    A USB3.0 FPGA Event-based Filtering and Tracking Framework for Dynamic Vision Sensors

    Get PDF
    Dynamic vision sensors (DVS) are frame-free sensors with an asynchronous variable-rate output that is ideal for hard real-time dynamic vision applications under power and latency constraints. Post-processing of the digital sensor output can reduce sensor noise, extract low level features, and track objects using simple algorithms that have previously been implemented in software. In this paper we present an FPGA-based framework for event-based processing that allows uncorrelated-event noise removal and real-time tracking of multiple objects, with dynamic capabilities to adapt itself to fast or slow and large or small objects. This framework uses a new hardware platform based on a Lattice FPGA which filters the sensor output and which then transmits the results through a super-speed Cypress FX3 USB microcontroller interface to a host computer. The packets of events and timestamps are transmitted to the host computer at rates of 10 Mega events per second. Experimental results are presented that demonstrate a low latency of 10us for tracking and computing the center of mass of a detected object.Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    Experimental evidence of solitary wave interaction in Hertzian chains

    Full text link
    We study experimentally the interaction between two solitary waves that approach one to another in a linear chain of spheres interacting via the Hertz potential. When these counter propagating waves collide, they cross each other and a phase shift respect to the noninteracting waves is introduced, as a result of the nonlinear interaction potential. This observation is well reproduced by our numerical simulations and it is shown to be independent of viscoelastic dissipation at the beads contact. In addition, when the collision of equal amplitude and synchronized counter propagating waves takes place, we observe that two secondary solitary waves emerge from the interacting region. The amplitude of secondary solitary waves is proportional to the amplitude of incident waves. However, secondary solitary waves are stronger when the collision occurs at the middle contact in chains with even number of beads. Although numerical simulations correctly predict the existence of these waves, experiments show that their respective amplitude are significantly larger than predicted. We attribute this discrepancy to the rolling friction at the beads contacts during solitary wave propagation

    EVALUATION OF ALTERNATIVE CONFIGURATIONS OF A WATER-OIL HEAT EXCHANGER SYSTEM

    Get PDF
    The success in performance of equipment at industrial facilities is associated with its capacity of normal operation. When some equipment is subject to maintenance at large cost, the operation is uninteresting or even impracticable. The heat exchanger is an equipment widely employed, which performs transfer of heat between two fluids at different temperatures, separated by a solid wall. In this work, we evaluate alternative configurations of a system of shell-and-tube heat exchangers, aiming to improve the performance of this system in economical point of view, and to mitigate the maintenance cost. We use the effectiveness method to obtain outlet temperature values, and compare such results with values measured in situ. We conclude that alternative configurations are feasible in order to improve the thermal performance of the system of heat exchangers, reducing installation cost

    A causal model for a closed universe

    Full text link
    We study a closed model of a universe filled with viscous fluid and quintessence matter components. The dynamical equations imply that the universe might look like an accelerated flat Friedmann-Robertson-Walker (FRW) universe at low redshift. We consider here dissipative processes which obey a causal thermodynamics. Here, we account for the entropy production via causal dissipative inflation.Comment: 9 pages. Accepted for publication in IJMP

    Chaos around a H\'enon-Heiles-inspired exact perturbation of a black hole

    Full text link
    A solution of the Einstein's equations that represents the superposition of a Schwarszchild black hole with both quadrupolar and octopolar terms describing a halo is exhibited. We show that this solution, in the Newtonian limit, is an analog to the well known H\'enon-Heiles potential. The integrability of orbits of test particles moving around a black hole representing the galactic center is studied and bounded zones of chaotic behavior are found.Comment: 7 pages Revte

    Neutrino helicity asymmetries in leptogenesis

    Full text link
    It is pointed out that the heavy singlet neutrinos characteristic of leptogenesis develop asymmetries in the abundances of the two helicity states as a result of the same mechanism that generates asymmetries in the standard lepton sector. Neutrinos and standard leptons interchange asymmetries in collisions with each other. It is shown that an appropriate quantum number, B-L', combining baryon, lepton and neutrino asymmetries, is not violated as fast as the standard B-L. This suppresses the washout effects relevant for the derivation of the final baryon asymmetry. One presents detailed calculations for the period of neutrino thermal production in the framework of the singlet seesaw mechanism.Comment: 11 pages, 1 figure, revtex, matches PRD versio

    How Hertzian solitary waves interact with boundaries in a 1-D granular medium

    Full text link
    We perform measurements, numerical simulations, and quantitative comparisons with available theory on solitary wave propagation in a linear chain of beads without static preconstrain. By designing a nonintrusive force sensor to measure the impulse as it propagates along the chain, we study the solitary wave reflection at a wall. We show that the main features of solitary wave reflection depend on wall mechanical properties. Since previous studies on solitary waves have been performed at walls without these considerations, our experiment provides a more reliable tool to characterize solitary wave propagation. We find, for the first time, precise quantitative agreements.Comment: Proof corrections, ReVTeX, 11 pages, 3 eps (Focus and related papers on http://www.supmeca.fr/perso/jobs/

    Causal amplitudes in the Schwinger model at finite temperature

    Get PDF
    We show, in the imaginary time formalism, that the temperature dependent parts of all the retarded (advanced) amplitudes vanish in the Schwinger model. We trace this behavior to the CPT invariance of the theory and give a physical interpretation of this result in terms of forward scattering amplitudes of on-shell thermal particles.Comment: 4 pages with 5 figures, two minor typos corrected, to appear in Physical Review
    • …
    corecore