50 research outputs found

    Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit

    Get PDF
    Cognitive deficits in neuropsychiatric disorders, such as Alzheimer's disease (AD), have been closely related to cholinergic deficits. We have compared different markers of cholinergic function to assess the best biomarker of cognitive deficits associated to cholinergic hypoactivity. In post-mortem frontal cortex from AD patients, acetylcholine (ACh) levels, cholinacetyltransferase (ChAT) and acetylcholinesterase (AChE) activity were all reduced compared to controls. Both ChAT and AChE activity showed a significant correlation with cognitive deficits. In the frontal cortex of rats with a selective cholinergic lesion, all cholinergic parameters measured (ACh levels, ChAT and AChE activities, "in vitro" and "in vivo" basal ACh release) were significantly reduced. AChE activity was associated to ChAT activity, and even more, to "in vivo" and "in vitro" basal ACh release. Quantification of AChE activity is performed by an easy and cheap method and therefore, these results suggest that determination of AChE activity may be used as an effective first step method to evaluate cholinergic deficits

    Facilitation of cholinergic transmission by combined treatment of ondansetron with flumazenil after cortical cholinergic deafferentation

    Get PDF
    We have studied the effects of concomitant blockade of 5-HT(3) and GABA(A) receptors on acetylcholine (ACh) release in the frontal cortex of rats with a selective cholinergic lesion. Lesions were performed by microinjection of the cholinergic toxin 192 IgG-saporin into the nucleus basalis magnocellularis. Single treatment with either the 5-HT(3) receptor antagonist ondansetron, 0.1 microg/kg, or the GABA(A) receptor benzodiazepine site antagonist flumazenil, 10 mg/kg, did not affect ACh release. However, the combined ondansetron + flumazenil administration significantly increased ACh release to a similar extent as a depolarising stimulus with K(+), 100 mM, at both 7 and 30 days post-lesion. Cortical perfusion with the combined ondansetron + flumazenil treatment also increased [(3)H]ACh efflux "in vitro" 30 days after lesion, suggesting that local events within the frontal cortex may participate in the interaction of ondansetron with GABAergic neurons, modulating ACh release in situations of cholinergic hypoactivity. No differences in the expression of 5-HT(3) and GABA(A) receptors in the frontal cortex were found after the cholinergic lesion. These results suggest that a combined ondansetron + flumazenil treatment would contribute to restoring a diminished cholinergic function and may provide a basis for using this treatment in the therapy of cognitive disorders associated with degeneration of the cholinergic system

    Maternal imprinting on cognition markers of wild type and transgenic Alzheimer's disease model mice.

    Get PDF
    The risk of suffering from Alzheimer's disease (AD) is higher in individuals from AD-affected mothers. The purpose of this investigation was to study whether maternal transmission might produce AD-related alterations in progenies of mice that do not have any genotypic alteration. We used cognitively-intact mothers harbouring in heterozygosity the transgene for overexpressing the Swedish double mutant version of the human amyloid precursor protein (hAβPPswe). The phenotype of the offspring with or without the transgene resulting from crossing young Tg2576 females with wild-type males were compared with those of the offspring resulting from crossing wild-type females with Tg2576 males. The hAβPPswe-bearing offspring from Tg2576 mothers showed an aggravated AD-like phenotype. Remarkably, cognitive, immunohistochemical and some biochemical features displayed by Tg2576 heterozygous mice were also found in wild-type animals generated from Tg2576 females. This suggests the existence of a maternal imprinting in the wild-type offspring that confers a greater facility to launch an AD-like neurodegenerative cascade. Such progeny, lacking any mutant amyloid precursor protein, constitutes a novel model to study maternal transmission of AD and, even more important, to discover early risk markers that predispose to the development of AD

    Corticosteroid-binding-globulin (CBG)-deficient mice show high pY216-GSK3β and phosphorylated-Tau levels in the hippocampus

    Get PDF
    Corticosteroid-binding globulin (CBG) is the specific carrier of circulating glucocorticoids, but evidence suggests that it also plays an active role in modulating tissue glucocorticoid activity. CBG polymorphisms affecting its expression or affinity for glucocorticoids are associated with chronic pain, chronic fatigue, headaches, depression, hypotension, and obesity with an altered hypothalamic pituitary adrenal axis. CBG has been localized in hippocampus of humans and rodents, a brain area where glucocorticoids have an important regulatory role. However, the specific CBG function in the hippocampus is yet to be established. The aim of this study was to investigate the effect of the absence of CBG on hippocampal glucocorticoid levels and determine whether pathways regulated by glucocorticoids would be altered. We used cbg-/- mice, which display low total-corticosterone and high free-corticosterone blood levels at the nadir of corticosterone secretion (morning) and at rest to evaluate the hippocampus for total- and free-corticosterone levels; 11β-hydroxysteroid dehydrogenase expression and activity; the expression of key proteins involved in glucocorticoid activity and insulin signaling; microtubule-associated protein tau phosphorylation, and neuronal and synaptic function markers. Our results revealed that at the nadir of corticosterone secretion in the resting state the cbg-/- mouse hippocampus exhibited slightly elevated levels of free-corticosterone, diminished FK506 binding protein 5 expression, increased corticosterone downstream effectors and altered MAPK and PI3K pathway with increased pY216-GSK3β and phosphorylated tau. Taken together, these results indicate that CBG deficiency triggers metabolic imbalance which could lead to damage and long-term neurological pathologies

    Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimer's disease

    Get PDF
    Previous studies have failed to reach consensus on insulin levels in cerebrospinal fluid of Alzheimer's disease (AD) patients and on its relation to pathological features. We performed a new analysis in patients at different stages of AD, and investigated the relationship of insulin levels with biochemical disease markers and with cognitive score. We included 99 patients from our Memory Clinic (Karolinska University Hospital, Sweden), including: 27 patients with mild AD, 13 that progressed from mild cognitive impairment (MCI) to AD in two years time, 26 with MCI stable after two years, and 33 with subjective cognitive impairment. Insulin was significantly decreased in the cerebrospinal fluid of both women and men with mild AD. Insulin deficits were seen in women belonging to both MCI groups, suggesting that this occurs earlier than in men. Insulin was positively associated with amyloid-β 1-42 (Aβ1-42) levels and cognitive score. Furthermore, total-tau/(Aβ1-42*insulin) ratio showed strikingly better sensitivity and specificity than the total-tau/Aβ1-42 ratio for early AD diagnosis in women

    Maternal imprinting on cognition markers of wild type and transgenic Alzheimer's disease model mice

    Get PDF
    The risk of suffering from Alzheimer’s disease (AD) is higher in individuals from AD-affected mothers. The purpose of this investigation was to study whether maternal transmission might produce AD-related alterations in progenies of mice that do not have any genotypic alteration. We used cognitively-intact mothers harbouring in heterozygosity the transgene for overexpressing the Swedish double mutant version of the human amyloid precursor protein (hAβPPswe). The phenotype of the offspring with or without the transgene resulting from crossing young Tg2576 females with wild-type males were compared with those of the offspring resulting from crossing wild-type females with Tg2576 males. The hAβPPswe-bearing offspring from Tg2576 mothers showed an aggravated AD-like phenotype. Remarkably, cognitive, immunohistochemical and some biochemical features displayed by Tg2576 heterozygous mice were also found in wild-type animals generated from Tg2576 females. This suggests the existence of a maternal imprinting in the wild-type offspring that confers a greater facility to launch an AD-like neurodegenerative cascade. Such progeny, lacking any mutant amyloid precursor protein, constitutes a novel model to study maternal transmission of AD and, even more important, to discover early risk markers that predispose to the development of AD

    Upregulation of brain renin angiotensin system by 27-hydroxycholesterol in Alzheimer's disease

    Get PDF
    In spite of the fact that cholesterol does not pass the blood-brain barrier, hypercholesterolemia has been linked to increase Alzheimer's disease (AD) risk. Hypertension is another risk factor and angiotensin converting enzyme (ACE) activity is known to be increased in AD. Furthermore, a lower incidence of AD has been reported in patients taking anti-hypertensive drugs. Here we show that the levels of angiotensinogen (AGT) and ACE are increased in the cerebrospinal fluid (CSF) of patients with mild cognitive impairment and AD. Moreover, we show ACE activity in the CSF to be positively correlated with both plasma and CSF levels of 27-hydroxycholesterol (27-OH), an oxysterol known to pass through the BBB and taken up from the circulation by the brain. In addition, treatment of rat primary neurons, astrocytes, and human neuroblastoma cells with 27-OH resulted in increased production of AGT. Our results demonstrate that upregulation of renin-angiotensin system (RAS) in AD brains occurs not only at the enzymatic level (ACE) but also at the substrate level (AGT). The possibility that 27-OH is part of a mechanism linking hypercholesterolemia with increased brain RAS activity and increased AD risk is discussed

    Involvement of an altered 5-HT -{6} receptor function in behavioral symptoms of Alzheimer's disease

    Get PDF
    We studied the hypothesis that disturbances in 5-HT_{6} receptor function in the temporal cortex may contribute to clinical symptoms of Alzheimer's disease (AD). 5-HT_{6} density and 5-HT levels were significantly decreased in a cohort of AD patients prospectively assessed for cognitive/behavioral symptoms. cAMP formation after stimulation with the selective 5-HT_{6} receptor agonist E-6801 was significantly lower (p<0.01) in AD (170.02 +/- 27.53 pmol/mg prot.) compared to controls (823.33 +/-196.67). In addition, the ratio cAMP formation after stimulation with E-6801/5-HT_{6} receptor density was significantly lower (p< 0.01) in AD (6.67 +/- 0.83) compared to controls (16.67 +/- 3.33). Splitting these results by sex, 5-HT_{6} receptor activation was significantly lower (p< 0.01) in AD females compared to males (121.67 +/- 30.02 vs. 231.67 +/- 34.17 pmol/mg prot). 5-HT_{6} density and 5-HT levels were significantly correlated (p < or = 0.01) in both controls and AD patients, although in AD, this correlation was lost in females. Psychosis factor was the best predictor of reduced 5-HT levels or adenylate cyclase activity after E-6801 stimulation, the former result being due to females. It may be suggested that psychotic symptoms may be related to a dysregulation of 5-HT_{6} activation by 5-HT in the temporal cortex. These results are discussed in terms of purported influence of sex and therapeutical approaches to psychosis in AD

    Efectos de la Estimulación Cognitiva en la Enfermedad de Alzheimer: Implicación de BDNF

    No full text
    Education and cognitive occupations is commonly associated to reduced risk of Alzheimer¿s disease (AD) dementia. Animal studies have demonstrated that cognitive stimulation (CS) achieved by social/physical activities and/or enriched environments compensates for memory decline. We have elaborated a novel paradigm of CS that is devoid of physical/social activity and enriched environments. 4 months-old Tg2576 mice were cognitively trained for 8 weeks and, after a break of 8 months, long-lasting effects of CS on cognitive abilities and AD-like pathology were measured. MWM and NOR tests showed that deficits in spatial and recognition memories were compensated by CS. These outcomes were accompanied by increased levels of hippocampal post-synaptic markers (PSD95 and NR1) and proteins involved in synaptic formation (Arc, â-catenin). CS softened amyloid pathology in terms of reduced levels of Aâ1-42 and the dodecameric assembly, referred as Aâ*56. CS appeared to affect the APP processing since differences in levels of ADAM17, BACE1 and C99/C83 ratio were found. Tau hyper-phosphorylation and high activities of Tau kinases were also reduced by CS. In contrast, CS did not induce any of these molecular changes in wild-type mice. The present findings suggest beneficial and long-lasting effects of CS early in life on cognitive decline and AD-like pathology. In this research work we have also characterized the role of BDNF on a new mechanism by which cognitive stimulation exerts its beneficial effects on cognitive decline and AD-like pathology

    Adrenomedullin, a new therapeutic target for the treatment of Alzheimer's disease

    No full text
    One of the consequences of the ageing world population is the increase in neurodegenerative diseases such as Alzheimer s or frontotemporal dementia. Neurodegenerative diseases are pathologies characterized by a gradual and irreversible deterioration of neurons and presenting with different neurological syndromes depending on the affected brain area. Dementias are the most common neurodegenerative disorders, for which therapeutic options are very limited and merely symptomatic, rather than neuroprotective or neuroregenerative. Furthermore, the most common dementia disorders, Alzheimer s disease or frontotemporal dementia, affect over 7 million people in Europe, and this figure is expected to double every 20 years as the population ages. The estimated care costs for dementia in Europe are approximately 130 billion per year, which cause a big concern on public health systems. Together with this, there is also an enormous social and human burden on patients as well as caregivers. For this reasons, one of the major challenges faced by neuroscience research field is to bring more insights into the molecular pathomechanisms that underlie the neurodegenerative processes in dementia disorders in order to design novel pharmacological approaches and develop successful therapies for preventing or treating dementia. The cytoskeleton plays an essential role on many fundamental neuronal processes, such as neuronal migration, cargo transport, polarity, and differentiation. Perturbations in the architecture of cytoskeleton can result in the loss of neuronal functions leading to neurodegeneration. This thesis aims to study the role of alterations in the cytoskeleton in the pathogenesis of neurodegenerative diseases. In particular, the thesis will focus on the involvement of adrenomedullin in alterations of the cytoskeleton and its relationship with two of the most common dementias, Alzheimer s disease and frontotemporal dementia. First, an overview of the current status of adrenomedullin, with special focus on its interaction with the cytoskeleton, along with a summary of the most relevant neurodegenerative diseases and the different possible pathways by which adrenomedullin might mediate its actions will be provided in the Chapter I, Introduction. Chapter II describes the hypothesis and objectives of the present thesis. Chapter III presents a study on the involvement of adrenomedullin in Alzheimer s disease and the purported mechanism of action by which adrenomedullin exert its effects in the course of the disease. Chapter IV describes changes in adrenomedullin expression in the ageing brain. In addition, it is described in this chapter the effects on cognition of deleting adrenomedullin gene in the CNS (AMKO mouse model) and the effects of ageing in this model. Chapter V presents a brief study on the involvement of adrenomedullin alterations on frontotemporal dementia and the possible influence on cytoskeleton. Finally, Chapter VI, General Discussion, integrates and highlights the most relevant aspects of the previous chapters, to end with the Chapter VII, Conclusions, summarising the main findings of the present thesis
    corecore